普通物理

1. A hybrid transmitting (Tx) and receiving (Rx) device is shown in Fig. 1. Its simplified circuit is depicted in Fig. 2. What is the condition for resistors R_1 , R_2 , R_3 , and R_{load} such that the receiving signal (echo) V_R is minimum when this device is

Fig. 1

Fig. 2

 Fig. 3 is an RLC circuit with an input signal v_s=v₀sinω_st. (a). Derive its current equation by voltage loop rule. (10%) (b). A particular solution of differential equation $y''(t) + ay'(t) + by(t) = f \cos \omega t$ is

$$y(t) = \frac{f\cos(\omega t - \phi)}{\sqrt{(b - \omega^2)^2 + (a\omega)^2}}, \quad \text{where } \phi = \tan^{-1} \frac{a\omega}{b - \omega^2}.$$

Fig. 3

Find the input frequency ω_t when the output signal v_B has a maximal value. (10%) (c). Find the output half-power bandwidth (i.e., the frequency region that the output signal decreases from $v_{\rm R,max}$ to $-v_{\rm t,max}$ / $\sqrt{2}$ when the input frequency

3. An incident laser beam enters one end of an optical fiber with incident angle θ_1 as shown in Fig. 4. The refraction indexes of the core, cladding and air are n_1, n_2 , and n_0 respectively ($n_1 > n_2 > n_0 = 1$.) Find the largest incident angle $|\theta|_1$ (in terms of n_1, n_2) such that the total energy propagates in the core of the fiber (neglect the reflection on the end.) (20%)

Fig. 4

4. Please describe briefly the physical principle of following peripheral or device of computer & communication system: monitor, disk drive, printer, scanner, mouse, CD-ROM, CCD, speaker, coaxial cable, and antenna. (30%)