科目:工程數學 C(5005)

校系所組:中大照明與顯示科技研究所(乙組)

中大電機工程學系(電子組、固態組)

交大電子研究所(甲組、乙組)

交大電控工程研究所(乙組、丙組)

交大電信工程研究所(乙組)

清大電機工程學系(甲組)、光電工程研究所

清大電子工程研究所、工程與系統科學系

清大動力機械工程學系(乙組)

- \(\) (5%) EM wave propagates inside an absorptive material. The absorbed intensity amount per penetration depth is proportional to the intensity at that position. Write down a mathematic model to describe the phenomenon above and obtain the general solution.

= \((-) (5\%) Solve the initial value problem, $xy' = y + \sqrt{x^2 + y^2}$, y(2) = 0.

(=) (5%) Solve the initial value problem, $\frac{y_1'-y_1-y_2=3x}{y_1'+y_2'-5y_1-2y_2=5}$, $y_1(0)=3$, $y_2(0)=4$.

 \equiv \(\((10\)\)) The differential equation: y''(t) + ay'(t) + by(t) = u(t), where a and b are constants and u(t) is the unit step function. All initial conditions are zero.

(-) (5%) Solve y(t) when a = 2 and b = 4.

(=) (5%) Solve y(t) when a = 4 and b = 4.

ਾ (5%) Let $x(t) = \cos(t)u(t)$ where u(t) denotes the unit step (or Heaviside step) function. Find the concatenated convolution x(t) * u(t) * u(t-1) using Laplace transform method, where * is the convolution operator.

£ \(\((15\%)\) Let y = y(x) be a real function of x and consider the following second order differential equation: $x^2y'' + (6x + x^2)y' + xy = x^2 + 2x$

Find the general Frobenius series solution of y.

注:背面有試題

 \Rightarrow \(\((5\%)\) Let $f(t) = \sin(\pi t)$ for t ∈ $(-\pi,\pi]$ be a function of period 2π . Find the Fourier series representation of f(t).

to specify reasons.

- () If the columns of **A** are linearly independent, then $\mathbf{A}\mathbf{x} = \mathbf{b}$ has exactly one solution for every **b**.
- (=) If U and W are two subspaces of a vector space V, the intersection of U and W is also a subspace of V.
- (Ξ) A square matrix with distinct eigenvalues is diagonalizable.
- (四) If two square matrices have the same determinant, then they are similar.
- (\pounds) If T is a linear transformation and $\{u_1\cdots u_k\}$ is a linearly independent set in the domain of T, then $\{T(u_1)\cdots T(u_k)\}$ is also linearly independent.
- \wedge \ (10 %) Consider the two sets of linear equations

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 (E1)

and

$$\begin{bmatrix} 2 & 0 \\ 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 (E2)

- (-) (4%) For the inconsistent set, find the least squares solution.
- (\equiv) (6%) For the consistent set, find the real-valued solution with the minimal two-norm (the two-norm of a vector $\mathbf{w} = [w_1 \cdots w_n]^T \in \mathbf{R}^n$ is defined to be $||\mathbf{w}||_2 = \sqrt{w_1^2 + \cdots + w_n^2}$).

九、(10%) This problem set discusses how to solve one-dimensional wave equation by Fourier

transform. Wave equation: $\frac{\partial^2 u(x,t)}{\partial t^2} - c^2 \frac{\partial^2 u(x,t)}{\partial x^2} = 0$, where c is a constant, $-\infty < x < \infty$, and 0 < t

 $<\infty$. No physical boundary. Initial displacement: u(x,0)=f(x), initial velocity: $\frac{\partial u(x,t)}{\partial t}\Big|_{t=0}=0$.

(-) (2%) Which independent variable (x or t) should be selected for Fourier transform? Why?

(\mathcal{L}) (2%) Perform Fourier transform for the wave equation to derive an ordinary differential equation. Use the notation of either $F_x\{u(x,t)\}=U(\xi,t)$ or $F_t\{u(x,t)\}=U(x,\omega)$ when variable x or t is selected.

 (\equiv) (3%) Solve the ordinary differential equation derived in (\equiv) with suitable boundary or initial conditions.

(四) (3%) Perform inverse Fourier transform for the solution in (Ξ) to derive the final solution u(x,t). Represent your result by parameters f, x, t, c only.

+ \((15\%)\) Consider a two-dimensional wave equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \qquad 0 \le x \le 2, \ 0 \le y \le 1$$

with the following boundary and initial conditions

$$u(0, y, t) = u(2, y, t) = 0$$

$$\frac{\partial u}{\partial y}(x,0,t) = \frac{\partial u}{\partial y}(x,1,t) = 0$$

$$u(x,y,0)=0$$

$$\frac{\partial u}{\partial t}(x, y, 0) = 1$$

(-) (5%) Derive the eigenvalues and the corresponding eigenfunctions.

 (\pm) (5%) What is lowest frequency in the motion of the solution (the fundamental frequency)?

 (\equiv) (5%) Solve u(x,y,t).

