參考文獻 |
[1] Gulzow, E., Kaz,T., Eeissner R., Sander, H., Schilling,L., V.Bradke, M., “Study of membrane electrode assemblies for direct methanol fuel cells,” Journal of Power Sources V. 105, pp. 261-266, (2002).
[2] Jiang, R. Z., Chu, D., “Stack design and performance of polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol.93, pp. 25-31, (2001)
[3] Hentall, P. L., Lakeman, J. B., Mepsted, G.O., and Adock, P.L., “New materials for polymer electrolyte membrane fuel cell current collectors,” Journal of Power Source, Vol.80, 235-241, (1999)
[4] Jiang, R. Z., Chu, D., “Comparative studies of polymer electrolyte membrane fuel cell stack and singal cell,” Journal of Power Sources, Vol. 80, pp.226-234, (1999)
[5]. Paganin, V. A., Ticianelli, E. A., Gonzalez, E.R., “Development of small polyer electrolyte fuel cell stacks,” Journal of Power Sources, Vol. 70, pp. 55-58, (1998)
[6] Choi, K. H., Park, D. J., Rho, Y. W., Kho, Y. T., Lee, T. H., “A study of the internal humidification of an integrated PEMFC stack,” Journal of Power Sources, Vol. 74, No. 1, pp. 146-150, (1998)
[7] Boyer, C., Gamburzev, S., Velev, O., Srinivasan, S., and Appleby, A.J., “Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes,” Electrochemical Acta., Vol. 43, No. 24, pp. 3703-3709, (1998)
[8] Kazim, A., liu, H. T., Forges, P., “Modelling of performance of PEM fuel cells with conventional and interdigitated flow field,” Journal of Apply Electrochemistry, Vol. 29, No.12, 1409-1416, (1999)
[9] Ihonen, J., Jaouen, F., Linderbergh, G., Sundholm, G., “A novel polymer electrolyte fuel cell for laboratory investigations and In-situ Contact Resistance Measurements,” Electrochemical Acta, No.46, 2899-2911, (2001)
[10] Wei, Z. B., Wang, Sui., Yi, B. L., “Influence of electrode structure on the performance of a direct methanol fuel cell,” Journal of Power Source, Vol. 106, pp. 364-369, (2002)
[11] Nguyen, T. V. and White, R. E., “A water and heat management model for proton-exchange-membrane fuel cells,” Journal of Electrochem. Soc., Vol. 140, No. 8, pp. 2178-2189, (1993)
[12] Yi, J. S. and Nguyen, T. V., “An along-the –channel Model for proton exchange membrane fuel cells,” Journal of Electrochem. Soc., Vol. 145, No. 4, pp. 1149-1159, (1998)
[13] Bernardi, D. M., “Water-balance calculation for solid - polymer - electrolyte fuel cells,” Journal of Electrochem. Soc., Vol. 137, No. 11, pp. 3344-350, (1990)
[14] Verbrugge, M. W. and Hill, R. F., “Transport phenomena in perfluorosulfonic acid membranes during the passage of current,” Journal of Electrochem. Soc., Vol. 137, No. 4, pp. 1131-1138, (1990)
[15] Bernardi, D. M. and Verbrugge, M. W., “A mathematical model of solid-polymer-electrolyte fuel cell,” Journal of Electrochem. Soc., Vol. 139, No. 9, pp. 2477-2490, (1992)
[16] Rowe, A. and Li X., “Mathematical modeling of proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 102, No. 1-2, pp. 82-96, (2001)
[17] Springer, T. E., Zawodzinski, T. A. and Gottesfeld, S., “Polymer electrolyte fuel cell model,” Journal of Electrochem. Soc., Vol. 138, No. 8, pp 2334-2342, (1991)
[18] Springer, T. E., Wilson, M. S. and Gottesfeld, S., “Modeling and experimental diagnostics in polymer electrolyte fuel cells,” Journal of Electrochem. Soc., Vol. 140, No. 12, pp. 3513-3526, (1993)
[19] Gorer, A. A., CA(US) “Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst,” United States Patent, US 6,498,121 B1, (2002)
[20] Cha, S. Y., and Lee, W. M., “Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin plathin on the membrane surface,” Journal of Electrochemical Society, Vol.146 (11), 4055-4060, (1999)
[21] Chun, Y. G., Kim, C. S., Peck, D. H., and Shin, D. R. “Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes,” Journal of Power Source, Vol.71, 174-178, (1998)
[22] Paganin, V. A., Ticianelli, E. A., and Gonzalez, E. R., “Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells,” Journal of Applied Electrochemistry, Vol.26, 197-304, (1996)
[23] Cha, S. Y., Song, J. M., and Lee, W. E., “Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of untrathin platinum on the membrane surface,” Journal of Applied Electrochemistry, Vol.28, 1413-1418, (1998)
[24] Cheng, X. L., Yi, B., Han, M., Zhang, J., Qiao, Y. U., and Yu, J. G., “Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells,” Journal of Power Source, Vol.79, 75-81, (1999)
[25] Shao, Z., Yi, B., and Han, M., “Bifunctional electrodes with a thin catalyst layer for ‘unitized’ proton exchange membrane regenerative fuel vell,” Journal of Power Source, Vol.79, 82-85, (1999)
[26] Escribano, S., Aldebert, P., and Pineri, M., “Volumic electrodes of fuel cells with polymer electrolyte membranes: electrochemical performances and structural analysis by thermoporomerty,” Electrochemic Acta, Vol 43, Nos.14-15, pp.2195-2202, (1998)
[27] 鄭煜騰與鄭耀宗, “質子交換膜型燃料電池的製造技術,” 能源季刊, 第二十七卷, pp. 118-131, (1997)
[28] Argyropoulos, P., Scott, K., Taama, W.M., “Hydrodynamic modeling of direct methanol liquid feed fuel cell stacks,” Journal of Applied Electrochemistry, Vol. 30, pp. 899-913, (2000)
[29] Kumar, A., Reddy, R. G., “Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells,” Journal of Power sources, Vol.113, 11-18, (2003)
[30] 邱燿輝,“質子交換膜燃料電池性能質傳及電流傳導問題之研究,” 大葉大學機械工程研究所碩士論文,彰化。(2003)
[31] 羅世坤,“流場設計對質子交換膜燃料電池性能之研究,” 國立中央大學機械研究所碩士論文,桃園。(2003)
[32] 熊思愷, “實驗方法探討質子交換膜燃料電池在不同設計條件及製作方式下對性能影響之研究,” 國立中山大學機械研究所碩士論文,高雄。(2002)
[33] Eric Kruszewski, “Investigation of graphite bipolar plates for PEM fuel cell performance,” Master of science in mechanical engineering, VPI, Blacksburg,Virginia, (2002)
[34] Moffat, R. J., “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, Vol. 1, pp.3-17, (1998)
[35] 林建良, “質子交換膜型燃料電池的水管理技術,” 能源季刊, 第二十八卷, pp. 106-118, (1998) |