參考文獻 |
Ackmann, T., Haart, L. G. J. de, Lehnert, W., and Stolten, D., “Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs”, Journal of the Electrochemical Society, Vol. 150, A783-A789 (2003).
Carrette, L., Friedrich, K. A., and Stimming, U., “Fuel Cells – Fundamentals and Applications”, Fuel Cells, Vol. 1, pp. 5-39 (2001).
Cooper, J. S., “Design Analysis of PEMFC Bipolar Plates Considering Stack Manufacturing and Environment Impact”, Journal of Power Sources, Vol. 129, pp. 152-169 (2004).
Dokiya, M., “SOFC System and Technology”, Solid State Ionics, Vol. 152-153, pp. 383-392 (2002).
Hein, K. R. G., “New challenges for research in a changing energy market”, Proc. Combust. Inst., Vol. 29, pp. 393-398 (2002).
Hoogers, G., Fuel Cell Technology Handbook, CRC Press, Boca Raton, Florida (2003).
Larminie, J., and Dicks, A., Fuel Cell Systems Explained, John Wiely & Sons, Ltd, Chichester, England (2000).
Lehnert, W., Meusinger, J., and Thom, F., “Modeling of Gas Transport Phenomena in SOFC Anodes”, Journal of Power Sources, Vol. 87, pp. 57-63 (2000).
Kumar, A., and Reddy, R. G.., “Effect of Channel Dimensions and Shape in the Flow-Field Distributor on the Performance of Polymer Electrolyte Membrane Fuel Cells”, Journal of Power Sources, Vol. 113, pp. 11-18 (2003).
Kumar, A., and Reddy, R. G.., “Materials and Design Development for Bipolar/End Plates in Fuel Cells”, Journal of Power Sources, Vol. 129, pp. 62-67 (2004).
Mehta, V., and Cooper, J. S., “Review and Analysis of PEM Fuel Cell Design and Manufacturing”, Journal of Power Sources, Vol. 114, pp. 32-53 (2003).
Middelman, E., Kout, W., and Vogelaar, B., “Bipolar Plates for PEM Fuel Cells”, Journal of Power Sources, Vol. 118, pp. 44-46 (2003).
Munson, B. R., Young, D. F., and Okiishi, T. H., Fundamentals of Fluid Mechanics, 3rd ed. update, John Wiely & Sons, Inc., New York, USA (1998).
Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., and Yasuda, I., “Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell”, Journal of Power Sources, Vol. 86, pp. 423-431 (2000).
Yakabe, H., Ogiwara, T., Hishinuma, M., and Yasuda, I., “3-D Model Calculation for Planar SOFC”, Journal of Power Sources, Vol. 102, pp. 144-154 (2001).
Yamamoto, O., “Solid Oxide Fuel Cells: Fundamental Aspects and Prospects”, Electrochimica Acta, Vol. 45, pp. 2423-2435 (2000).
Yuan, J., Rokni, M., and Sundén, B., “Simulation of Fully Developed Laminar Heat and Mass Transfer in Fuel Cell Ducts with Different Cross-Sections”, International Journal of Heat and Mass Transfer, Vol. 44, pp. 4047-4058 (2001).
Yuan, J., Rokni, M., and Sundén, B., “Buoyancy Effects on Developing Laminar Gas Flow and Heat Transfer in a Rectangular Fuel Cell Duct”, Numerical Heat Transfer, Part A, Vol. 39, pp. 801-822 (2001).
Yuan, J., Rokni, M., and Sundén, B., “Combined Mass Suction and Buoyancy Effects on Heat Transfer and Gas Flow in a Fuel Cell Duct”, Numerical Heat Transfer, Part A, Vol. 43, pp. 341-366 (2003).
Yuan, J., Rokni, M., and Sundén, B., “Three-Dimensional Computational Analysis of Gas and Heat Transport Phenomena in Ducts Relevant for Anode-Supported Solid Oxide Fuel Cells”, International Journal of Heat and Mass Transfer, Vol. 46, pp. 809-821 (2003).
Peng, X. F., and Peterson, G. P., “Frictional Flow Characteristics of Water Flowing through Rectangular Microchannels”, Experimental Heat Transfer, Vol. 7, pp. 249-264 (1994).
Recknagle, K. P., Williford, R. E., Chick, L. A., Rector, D. R., and Khaleel, M. A., “Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks”, Journal of Power Sources, Vol. 113, pp. 109-114 (2003).
Singhal, S. C., “Advances in Solid Oxide Fuel Cell Technology”, Solid State Ionics, Vol. 135, pp. 305-313 (2000).
Singhal, S. C., “Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications”, Solid State Ionics, Vol. 152-153, pp. 405-410 (2002).
Stambouli, A. B., and Traversa, E., “Solid Oxide Fuel Cells (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 433-455 (2002).
Tanner, C. W., and Virkar, A. V., “A Simple Model for Interconnect Design of Planar Solid Oxide Fuel Cells”, Journal of Power Sources, Vol. 113, pp. 44-56 (2003).
Tu, H., and Stimming, U., “Advances, Aging Mechanisms and Lifetime in Solid-Oxide Fuel Cells”, Journal of Power Sources, Vol. 127, pp. 284-293 (2004).
Vielstich, W., Lamm, A., and Gasteiger, H. A., Handbook of Fuel Cells: Fundamentals Technology and Applications, John Wiely & Sons, Ltd, Chichester, England (2003).
Wen, T. –L., Wang, D., Chen, M., Tu, H., Lu, Z., Zhang, Z., Nie, H., and Huang, W., “Material research for Planar SOFC Stack”, Solid State Ionics, Vol. 148, pp. 513-519 (2002).
Winkler, W., and Koeppen, J., “Design and Operation of Interconnectors for Solid Oxide Fuel Cell Stacks”, Journal of Power Sources, Vol. 61, pp. 201-204 (1996).
Winkler, W., “The Influence of Mass Transfer on the Geometric Design of SOFC Stacks”, Journal of Power Sources, Vol. 86, pp. 449-454 (2000).
Zhu, B., “Advantages of Intermediate Temperature Solid Oxide Fuel Cells for Tractionary Applications”, Journal of Power Sources, Vol. 93, pp. 82-86 (2001).
Acumentrics, http://www.acumentrics.com/ .
Fuel Cells 2000, http://www.fuelcells.org/ .
Research Centre Jülich, http://www.fz-juelich.de/ .
Siemens Westinghouse, http://www.siemens.com/ .
Sulzer Hexis Ltd, http://www.hexis.com/ .
黃鎮江,燃料電池,初版,全華科技圖書股份有限公司,台北市(2003)。 |