博碩士論文 91323091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.216.145.37
姓名 林玉婷(Yu-Ting Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 強健模糊動態輸出回饋控制-Circle 與 Popov 定理
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ T-S模糊模型之建構、強健穩定分析與H2/H∞控制★ 廣義H2模糊控制-連續系統 線性分式轉換法
★ 廣義模糊控制-離散系統 線性分式轉換法★ H∞模糊控制-連續系統 線性分式轉換法
★ H∞模糊控制—離散系統 線性分式轉換法★ 強健模糊觀測狀態回饋控制-Circle與Popov定理
★ H_infinity 取樣模糊系統的觀測型控制★ H∞取樣模糊系統控制與觀測定理
★ H-ihfinity取樣模糊系統動態輸出回饋控制★ H∞模糊系統控制-多凸面法
★ H∞模糊系統控制-寬鬆變數法★ 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測
★ 寬鬆耗散性模糊控制-波雅定理★ 耗散性估測器-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主要分為兩部分:
1.經由事先給定非線性系統的動態方程式,將此系統精確的轉換成 Takagi-Sugeno (T-S) 模糊模型。設計動態輸出回授控制器來穩定連續及離散 T-S 模糊模型並滿足圓定理(Circle theorem)的穩定條件。
2.同樣將經由事先給定非線性系統的動態方程式,將此系統精確的轉換成Takagi-Sugeno (T-S) 模糊模型。設計動態輸出回授控制器來穩定連續及離散 T-S 模糊模型並滿足Popov 定理(Popov theorem)的穩定條件。
本篇論文不同於以往的部分在於我們是從時域切入,並且在絕對穩定(Absolute stability)架構中將原為線性系統中的非線性項,改成模糊系統中的非線性項。改變系統架構後,先將非線性系統轉換成T-S 模糊模型,以提供一套系統化的研究方法研究非線性系統的穩定性分析問題。當使用這套方法時,由於控制器是根據 T-S 模糊模型所設計而非直接針對非線性系統做設計,因此若非線性系統與 T-S 模糊模型間誤差為0,則此控制法則可用於非線性系統。
為確保系統與模型之間的誤差為零,本篇論文沿用一個方法將誤差以有界非線性項 (sector-bounded nonlinearities) 來表示,而後,非線性系統即可精確的表達成具有非線性項的 T-S 模糊模型。其中非線性項的限制分別須要滿足Circle或 Popov Criteria,若非線性項分別轉換成不確定參數項後,則可視為強健模糊控制。圓定理與Popov 定理最大不同在於他們的Lyapunov函數不同,前者使採用一般的二次Lyapunov 函數,後者則是使用Lure-type Lyapunov函數來證明穩定度的問題。
針對 T-S 模糊模型,本篇論文根據平行分散式補償器 (PDC) 的概念設計控制器。控制系統中,當系統狀態無法完全獲知時,則必須採用估測器獲得所需的資訊或直接以輸出回授做控制,本篇所討論的即是研究動態輸出回授控制器的設計與分析。
在動態輸出回授控制或觀測器方面,最大的問題在於所推導出的穩定條件並非線性矩陣不等式 (LMI) 而是以雙線性矩陣不等式 (BMI)的形式呈現,而 BMI 無法如同 LMI 一般可輕易經由現有工具程式求解。因此,本篇將此部份的重點放在如何求解 BMI 的問題上,透過蕭氏轉換(Schur complement)及全等轉換(congruence transform)的方法可將控制問題中的 BMI 條件轉換為 LMI 形式求解或者經由求解某些 LMI 的子矩陣來達到求解BMI。最後分別以倒單擺及倒車入庫系統的例子來進行電腦模擬。
摘要(英) No
關鍵字(中) ★ 雙線性矩陣不等式
★ 線性矩陣不等式
★ Popov定理
★ 圓定理
★ 強健控制
★ 平行分佈補償器
★ T-S模糊模型
關鍵字(英) ★ Popov theorem
★ Lure-type Lyapunov function
★ Linear matrix inequality (LMI)
★ Circle theorem
★ Parallel distributed compensator (PDC)
★ Bilinear matrix inequality (BMI)
★ Robust control
★ Takagi-Sugeno (T-S) fuzzy model
論文目次 第一章 簡介 1
{1.1}文獻回顧 1
{1.2}研究動機 2
{1.3}論文結構 3
{1.4}符號標記 4
{1.5}預備定理 4
第一部份:圓定理(Circle Theorem) 6
第二章 系統架構與圓定理 6
{2.1}數學模型 6
{2.2}穩定條件 8
第三章 動態輸出回饋控制器設計 12
{3.1}數學模型 12
{3.2}廣義動態輸出回饋控制器 13
{3.3}動態輸出回饋控制器 15
{3.3.1}連續系統 15
{3.3.2}離散系統 18
第四章 電腦模擬 28
{4.1}倒單擺例子 28
{4.1.1}數學架構 28
{4.1.2}求解 30
{4.2}倒車例子 37
{4.2.1}數學架構 37
{4.2.2}求解 39
第二部份:Popov定理 47
第五章 系統架構與Popov定理 47
{5.1}數學模型 47
{5.2}穩定條件 49
第六章 動態輸出回饋控制器設計 55
{6.1}數學模型 55
{6.2}廣義動態輸出回饋控制器 56
{6.3}動態輸出回饋控制器 58
{6.3.1}連續系統 58
{6.3.2}離散系統 62
第七章 電腦模擬 70
{7.1}倒單擺例子 70
{7.1.1}數學架構 70
{7.1.2}求解 71
{7.2}倒車例子 78
{7.2.1}數學架構 78
{7.2.2}求解 79
第八章 總結與未來方向 87
{8.1}總結 87
{8.2}未來研究方向 88
參考文獻 89
參考文獻 [1] T. Takagi and M. Sugeno, "Fuzzy identi_cation of systems and its applications to modeling and control", IEEE Trans. Syst., Man, Cybern., vol. 15, n. 1, pp. 116-132, January 1985.
[2] M. Sugeno and G.T. Kang, "Structure identi_cation of fuzzy model", Fuzzy Sets and Systems, vol. 28, pp. 15-33, 1988.
[3] K. Tanaka and M. Sugeno, "Stability analysis and design of fuzzy control systems", Fuzzy Sets and Systems, vol. 45, pp. 135-156, 1992.
[4] K. Tanaka and M. Sano, "Trajectory stabilization of a model car via fuzzy control", Fuzzy Sets and Systems, vol. 70, pp. 155-170, 1995.
[5] H.O. Wang, K. Tanaka and M.F. Gri_n, "An approach to fuzzy control of non-
linear systems: stability and design issues", IEEE Trans. Fuzzy Syst., vol. 4, n. 1, pp. 14-23, February 1996.
[6] K. Tanaka, T. Ikeda and H.O. Wang, "Fuzzy regulators and fuzzy observers:
relaxed stability conditions and LMI-based designs", IEEE Trans. Fuzzy Syst.,
vol. 6, n. 2, pp. 250-265, May 1998.
[7] S.G. Cao, N.W. Rees and G. Feng, "Analysis and design of fuzzy control systems using dynamic fuzzy global model", Fuzzy Sets and Systems, vol. 75, pp. 47-62,1995.
[8] S.H. Zak, "Stabilizing fuzzy system models using linear controllers", IEEE Trans. Fuzzy Syst., vol. 7, n. 2, pp. 236-240, April 1999.
[9] W.M. Haddad and D.S. Bernstein, "Explict construction of quadratic Lyapunov
functions for the small gain,positive,circle and Popov theorems and their appli-
cation to robust stability. Part I:continuous-time theory", Int'l J. of Robust and Nonlinear Control, vol. 3, pp. 313-339, 1993.
[10] I.R. Petersen, "A stabilization algorithm for a class of uncertain linear systems", Syst. & Contr. Lett., vol. 8, pp. 351-357, 1987.
[11] P.P. Khargonekar, I.R. Petersen and K. Zhou, "Robust stabilization of uncertain linear systems: quadratic stabilizability and H∞ control theory", IEEE Trans. Automat. Contr., vol. 35, n. 3, pp. 356-361, March 1990.
[12] L. Xie, M. Fu and C.E. de Souza, "H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback", IEEE Trans. Automat.
Contr., vol. 37, n. 8, pp. 1253-1256, August 1992.
[13] H.J. Kang, C. Kwon, Y.H. Yee and M. Park, "L2 robust stability analysis for the fuzzy feedback linearization regulator", in Proc. of the 6th IEEE Int'l Conf. on Fuzzy Systems, volume 1, pp. 277-280, 1997.
[14] H.J. Kang, C. Kwon, H. Lee and M. Park, "Robust stability analysis and design method for the fuzzy feedback linearization regulator", IEEE Trans. Fuzzy Syst., vol. 6, n. 4, pp. 464-472, November 1998.
[15] K. Kiriakidis, A. Grivas and A. Tzes, "Quadratic stability analysis of the Takagi-Sugeno fuzzy model", Fuzzy Sets and Systems, vol. 98, pp. 1-14, 1998.
[16] M.C.M. Teixeira and S.H. Zak, "Stabilizing controller design for uncertain nonlinear systems using fuzzy models", IEEE Trans. Fuzzy Syst., vol. 7, n. 2, pp. 133-142, April 1999.
[17] S.G. Cao, N.W. Rees and G. Feng, "Quadratic stability analysis and design of continuous fuzzy control systems", Int'l. Journal on Systems Science, vol. 27, n. 2, pp. 193-203, 1996.
[18] S.G. Cao, N.W. Rees and G. Feng, "Analysis and design of fuzzy control systems using dynamic fuzzy-state space models", IEEE Trans. Fuzzy Syst., vol. 7, n. 2, pp. 192-200, 1999.
[19] K. Tanaka, T. Ikeda and H.O. Wang, "Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities", IEEE Trans. Fuzzy Syst., vol. 4, n. 1, pp. 1-13, February 1996.
[20] K. Tanaka, T. Hori and H.O. Wang, "New robust and optimal designs for Takagi-Sugeno fuzzy control systems", in Proc. of 1999 IEEE Int'l Conf. on Control Appl., pp. 415-420, Kohala Coast, Hawaii, 1999.
[21] S.G. Cao, N.W. Rees and G. Feng, "H∞ control of uncertain fuzzy continuous-time systems", Fuzzy Sets and Systems, vol. 115, pp. 171-190, 2000.
[22] Z. Han and G. Feng, "State feedback H∞ controller design of fuzzy dynamic systems using LMI techniques", in Proc. of IEEE World Congress on Computational
Intelligence, volume 1, pp. 538-544, Anchorage, AK., May 1998.
[23] Z. Han, G. Feng and N. Zhang, "Dynamic output feedback H∞ controller design
of fuzzy dynamic systems using LMI techniques", in Proc. of Second International
Conference on Knowledge-Based Intelligent Electronic Systems, volume 2, pp. 343-
352, Adelaide, AU, 1998.
[24] A. Jadbabaie, M. Jamshidi and A. Titli, "Guaranteed-cost design of
continuous-time Takagi-Sugeno fuzzy controller via linear matrix inequalities", in Proc. of IEEE World Congress on Computational Intell., volume 1, pp. 268-273, Anchorage, AK., May 1998.
[25] S.K. Hong and R. Langari, "Synthesis of an LMI-based fuzzy control system
with guaranteed optimal H∞ performance", in Proc. of IEEE World Congress on
Computational Intell., volume 1, pp. 422-427, Anchorage, AK., May 1998.
[26] B.S. Chen, C.S. Tseng and H.J. Uang, "Mixed H2/H∞ fuzzy output feedback
control design for nonlinear dynamic systems: an LMI approach", IEEE Trans.
Fuzzy Syst., vol. 8, n. 3, pp. 249-265, June 2000.
[27] W.M. Haddad and D.S. Bernstein, "Explict construction of quadratic Lyapunov
functions for the small gain,positive,circle and Popov theorems and their appli-
cation to robust stability. Part II:dicrete-time theory", Int'l J. of Robust and
Nonlinear Control, vol. 4, pp. 249-265, 1994.
[28] H. K. Khalil, Nonlinear System, Macmilan Publishing Company, New York, NY,
1992.
[29] C. Pittet, S. Tarbouriech and C. Burgat, "Output feedback synthesis via the
circle criterion for linear systems subject to saturating inputs", in Proc. of the 37th IEEE Conf. on Decision & Control, pp. 401-406, Tampa, FL., 1998.
[30] P. Apkarian, P. C. Pellanda and H. D. Tuan, "Mixed H2/H∞ multi-channel linear parameter-varying control in discrete time", Syst. & Contr. Lett., vol. 41, pp. 333-346, 2000.
[31] H. D. Tuan, P. Apkarian, T. Narikiyo and M. Kanota, "New Fuzzy Control Model and Dynamic Output Feedback Parallel Distributed Compensation", IEEE Trans. Fuzzy Syst., vol. 12, n. 1, pp. 13{21, February 2004.
[32] J.C. Lo and E.C. Chen, "State Feedback Control via Circle Criterion for Uncertain Fuzzy Systems", in 2004 Automatic Control Conference, Changhua, TW, 2004.
[33] J.C. Lo and Y.T. Lin, "Robust Control for uncertain fuzzy systems via Circle Criterion", in 2003 The Joint Conference on AI,Fuzzy System,and Gray System, Taipei, TW, December 2003.
[34] J.C. Lo and S.W. Hou, "Generalized H2 control for fuzzy systems with LFT
framework", in Proc. 10th Nat'l Conf. Fuzzy Theory and Appl., pp. 19-22, Shinchu, TW, November 2002.
[35] M. L. Lin, Model Construction,Robust Stabilization and H2/H∞ Control for T-S Fuzzy Model, TW, 2003.
[36] G. Feng and J. Ma, "Quadratic stabilization of uncertain discrete-time fuzzy dynamic system", IEEE Trans. Circuits and Syst. I: Fundamental theory and
Applications, vol. 48, n. 11, pp. 1137-1344, 2001.
[37] Y.Y. Cao and P.M. Frank, "Robust H∞ disturbance attenuation for a class of
uncertain discrete-time fuzzy systems", IEEE Trans. Fuzzy Syst., vol. 8, n. 4,
pp. 406-415, August 2000.
[38] K. Tanaka and M. Sano, "A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer", IEEE Trans. Fuzzy Syst., vol. 2, n. 2, pp. 119-133, May 1994.
[39] K. Tanaka and H.O. Wang, Fuzzy Control Systems Design: A Linear Matrix
Inequality Approach, John Wiley & Sons, Inc., New York, NY, 2001.
指導教授 羅吉昌(J.C. Lo) 審核日期 2004-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明