博碩士論文 91343028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.145.59.244
姓名 任國光(Kuo-Kuang Jen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 長時間動態信號倒頻譜特徵擷取及分類研究
(The Research on Cepstrum Feature Extraction and Classification Techniques for Long Term Dynamic Signals)
相關論文
★ 應用於車身號碼打刻機之號碼辨識★ 複合式掌紋識別系統
★ 圓形偵測在OLED Panel 檢測上的應用★ MLCC薄膜厚度即時線上影像檢測技術之研發
★ 全自動微鑽針影像檢測系統之研究★ 應用類神經網路預測COG製程對於中小尺寸TFT-LCD產生之應力狀態
★ 應用機器視覺系統檢測高滲透壓刀輪切割 TFT-LCD 玻璃後斷面之研究★ 低成本輕量化機械手臂之研究
★ 應用在同軸電纜加工之雷射光斑導引機構設計與分析★ 表面電漿波共振-非旋轉方式的新機構設計理論
★ 網路協同式機械設計系統研發★ 軟膠囊自動辨識系統
★ 心電訊號之擷取與分析★ 盲人圖樣感知輔助裝置之研發設計
★ 非旋轉式表面電漿共振儀之改良與實現★ 可攜式無線心電訊號擷取器之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 心電訊號處理的論文,大部份針對單一波形(單一QRS COMPLEX)來求取特徵參數後進行辨認,這類文章已有許多方法被提出,但此些方法均僅觀看單一波形,常無法看出波形間隱藏的資訊,本文提出利用倒頻譜參數來求取長時間的心電信號特徵參數,並用此參數向量來作病症辨認,利用本法針對一段時間的心電訊號作特徵參數求取,如此可看出波形間隱藏的特性且可將其存成心電信號資料庫,再利用DTW(Dynamic Time Warping, DTW)的方法來加以辨認,文中使用MIT/BIH(麻省理工學院醫學中心與貝色以色列醫院)的不整脈心電圖資料庫中正常及PACED BEAT的資料來進行測試,確實能有效區分兩種不同訊號,因此本研究所提出的方法可有效執行長時間心電訊號特徵參數的求取,並有助於作好病症分類。其次, 在分類辨識方面,本研究利用監督式倒傳遞網路,以MIT/BIH資料庫做類神經網路的訓練學習與評估測試。選擇現有資料庫所儲存的病症本研究將針對將針對正常正常(NOR)、左束枝傳導阻滯(LBBB)、右束枝傳導阻滯(RBBB)、心室頻脈(VF)等四類病症作診斷。整個心電圖自動診斷即是以倒頻譜轉換自動偵測擷取特徵值再以類神經網路進行分類辨識。使用MIT/BIH資料庫評估本自動診斷系統,即使心電圖訊號受高頻或低頻準線漂移的干擾,自動偵測分類的正確率達97.5% 以上。
因此本研究所提出的方法可有效提供執行長時間動態信號特徵參數的擷取與辨識。
摘要(英) Current ECG signal processing methods for feature extraction of QRS complex are mainly focusing on a short-term single heartbeat rather than a long-term multiple heartbeats, in which much useful information is hiding between QRS complexes and only retrievable through long-term monitoring. This dissertation proposes a cepstrum coefficients method to extract the feature from a long term ECG signal. Utilizing this method, one can identify the characteristics hiding inside the ECG signal and classify the signal by its feature vector by DTW (Dynamic Time Warping) and ANN (artificial neural network). First, Normal and Paced-Beat data in the MIT/BIH (Massachusetts Institute of Technology and Beth Israel Hospital) arrhythmia database are used to evaluate the proposed algorithm, and the experiment results have demonstrated successful classification for different cardiac diseases and proved the algorithm to be a fast valid method for long term ECG signal feature extraction. Second, an integrated system for ECG diagnosis that combines cepstrum coefficients method for feature extraction from long-term ECG signals and ANN models for the classification is proposed. Unlike the previous methods using only one single heartbeat for analysis, we analyze a meaningful ECG segment data, usually containing 5-6 heartbeats, to obtain the corresponding cepstrum coefficients and classify the cardiac systems through ANN models. Utilizing the proposed method, one can identify the characteristics hiding inside an ECG signal and then classify the signal as well as diagnose the abnormalities. To evaluate this method, the NOR, LBBB, RBBB and VF types of ECG data from the MIT/BIH database were used for verification. The experiment results showed that the accuracy of diagnosing cardiac disease was above 97.5%. The proposed method successfully extracted the corresponding feature vectors, distinguished the difference and classified long term dynamic signals correctly.
關鍵字(中) ★ 分類
★ 倒頻譜
★ 特徵值
★ 心電圖
關鍵字(英) ★ DTW
★ Feature Extraction
★ Cepstrum
★ ECG
論文目次 Contents
ABSTRACT II
CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES VIII
CHAPTER 1 INTRODUCTION 1
1.1 RESEARCH MOTIVATION AND LITERATURE REVIEW 1
1.2 OVERVIEW OF THE THESIS 4
CHAPTER 2 THE CONCEPT OF ECG PATTERN CLASSIFICATION 6
2.1 THE ECG SIGNAL 6
2.2 ECG DATA SOURCE 7
2.2.1 Real-time ECG Signal 7
2.2.2 ECG Database. 8
2.3 PATTERN CLASSIFICATION 9
2.4 CLASSIFICATION OF ECG SIGNAL 11
CHAPTER 3 DATA PROCESSING ALGORITHM 18
3.1 CEPSTRUM COEFFICIENTS EXTRACTION ALGORITHM FOR ECG SIGNAL 18
3.1.1 Start Point Detection of Segment Data 19
3.1.2 Feature Extraction 20
3.2 DTW FEATURE COMPARISON 34
3.3 CLASSIFICATION WITH ANN 38
CHAPTER4. EXPERIMENTAL RESULTS AND DISCUSSION 51
4.1 CEPSTRUM AND DTW 51
4.2 CEPSTRUM AND ANN 53
4.3 INDUSTRIAL APPLICATION 56
4.3.1 Fuzzy MRAC Controller Design for the vane-type Air Motor 56
4.3.2 Application of Cepstrum and Neural Network to Bearing Fault Detection 58
CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 81
5.1 CEPSTRUM AND DTW 81
5.2 CEPSTRUM AND ANN 81
5.3 FUTURE RESEARCH 82
BIBLIOGRAPHY 84
參考文獻 [1] Pahlm O. and Sornmo L., Software QRS detection ambulatory, monitoring - A review. Med. Biol. Eng. Comput.,Vol 22,pp.289-297,1984.
[2] Okada M., A digital filter for the QRS complex detection, IEEE trans. Biomed. Engr., Vol BME-26, pp.700-704,1979.
[3] Van Dam RAAF, Brekelmans FEM, Duisterhout JS, A high performance Microprocessor-based arrhythmia monitor., IEEE Computers in Card. SOC., pp.449-452,1981
[4] J.S. Sahambi, S.N. Tandon,and R.K.P Bhatt,”Using wavelet transforms for ECG characterization,” IEEE Engineering in Medicine and Biology,pp.77-83,1997.
[5] K.p. Lin and W.H. Chang.,”QRS feature extraction using linear prediction”,IEEE Trans. Biomed.Eng., vol.36,no.10,pp.1050-1055,Oct.1989..
[6] J. Pan and W. Tompkins, “A real-time QRS detection algorithm”, IEEE Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 230-236, March. 1985.
[7] B.Huang and W.Kinsner ,”ECG frame classification using dynamic time warping”, Proceeding of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering ,Winnipeg, Canada, pp.1105-1110, Feb,2002
[8] B. P. Bogert, M. J. Healy and J. W. Tukey, “The frequency analysis of time series for echoes: cepstrum pseudo- autocovariance, cross-cepstrum and shape cracking,” in: M. Rosenblatt (Ed.), Time Series Analysis, New York: Wiley, pp.209-243, 1963.
[9] B. S. Atal, “Effectiveness of linear prediction characteristics of the speech wave for automatic speaker identification and verification,” J. Acoust. Soc. Am., 55: 1304-1312, 1974.
[10] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975.
[11] S. I. Niwas, R. S. S. Kumari and V. Sadasivam, “Artificial neural network based automatic cardiac abnormalities classification,” Proc. of Sixth Int. Conf. on Computational Intelligence and Multimedia Applications, 41-46, 2005.
[12] L. Fausett, Fundamentals of Neural Networks, Englewood Cliffs, NJ: Prentice Hall, 1994.
[13]D. Davis, 1992, How to Quickly and Accurately Master ECG Interpretation, Lippincott Williams & Wilkins Publishers.
[14]Y. X. Huang, 2000, Clinical Electrocardiography (in Chinese), second edition, Yi-Xuan Publishers.
[15] R. J. Rangayyan, 2002, Biomedical Signal Analysis, Wiley-Interscience.
[16]W. J. Tompkins, 1993, Biomedical Digital Signal Processing, Englewood Cliffs, NJ: Prentice Hall.
[17] J. G.. Webster, 1998, Medical Instrumentation Application and Design, third edition, John Wiley & Sons, LTD.
[18]Mammone, R. J., Zhang, X., and Ramachandran, R. P., Robust speaker recognition-A feature-based approach. IEEE Signal Processing Magazine (Sept. 1996),58-71.
[19]Junqua, J. C., and Haton, J. P., Robustness in Automatic Speech Recognition--Fundamentals and Applications. Boston: Kluwer Academic Publishers, 1996.
[20]Markel, J. D., and Makhoul, A. h., Linear Prediction of speech. New York: Springer-Verlag, 1976.
[21]Sugamura, N., and Itakura, F. Speech analysis and synthsis methods developed at ECL in NTT—from LPC to LSP. Speech Communication, 5(1986),199-215.
[22] Atul Luthra, “ECG Made Easy”, 2nd edition, Jaypee Publications, New Delhi, 2004.
[23] K. Minami, H. Nakajima, and T. Toyoshima, “Real-time discrimination of beats of ventricular tachyarryhtmia with Fourier transform neural network,” IEEE Trans. Biomed. Eng., vol. 46, pp.179-185, Feb. 1999.
[24] S. Evans, H. Hastings, and M. Bodenheimer, “Differentiation of beats of ventricular and sinus origin using a self-training neural network,” PACE, vol.17, pp.320-328, 1989..
[25] R. Clayton, A. Murray, and R. Campell, “Recognition of ventricular fibrillation using neural network,” Med. Biol. Eng. Comput., vol.32,pp. 611-626,1994.
[26] L. Sornmo, P. O. Borjesson, M. E. Nygards, and O. Pahlm, “A method for evaluation of QRS shape features using a mathematical model for the ECG,” IEEE Trans. Biomed. Eng., vol. 28, pp.713-717,Aug 1981.
[27] T. H. Yeap, F. Johnson, and M.Rachniowski, “ECG beat classification by a neural network”, in Proc Annu. Int. Conf. IEEE Engineering Medicine and Biology Soc., 1990, pp. 1457-1458.
[28] Yu Hen Hu, W. J. Tompkins, J. L. Urrusti, and V. X. Afonso, “Applications of artificial neural network for ECG signal detection and classification”, J. Electrocardiol.,vol. 26, pp. 66-73, 1993.
[29] S. Osowski and T. H. Linh, “ECG beat recognition using fuzzy hybrid neural”, IEEE Trans. Biomed. Eng., vol. 44, pp.1265-1271, Nov. 2001.
[30] Y. H. Hu, S. Palreddy, and W. J. Tompkins, “A patient-adaptable ECG beat classifier using a mixture of experts approach”, IEEE Trans. Biomed. Eng., vol. 44, pp.891-900, Sept. 1997.
[31] L. Senhadji, G. Carrault, J. J. Bellanger, and G. Passasriello, “Comparing wavelet transforms for recognizing cardiac pattern,” IEEE Eng. Med. Biol. Mag., vol. 14, pp.167-183, Mar-Apr.,1995.
[32] D. A. Coast, R. M. Stern, G. G. Cano, and S. A. Briller, “An approach to cardiac arrhythmia analysis using hidden markov models,” IEEE Trans. Biomed. Eng., vol. 37, pp.826-836, Sep. 1990.
[33] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, and L. Sornmo, “Clustering ECG complexes using hermite functions and self organizing maps”, IEEE Trans. Biomed. Eng., vol. 47, pp.838-848, July. 2000.
[34] P. Chazal and R. B. Reilly, “A comparison of the use of different wavelet coefficients for the classification of the electrocardiogram,” in 15th Internation Conference on Pattern Recognition, vol. 2, pp.255-258, 2000.
[35] S. Furui., 1981, “Ceptral analysis technique for automatic speaker verification,” in IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 2, pp.254-272.
[36] K. P. Lin, W. H. Chang., 1987, “ECG signal analysis by linear predictive method. Presented at IEEE 9th Annual Conference of the Engineering in Medicine and Biology Society, Boston, MA, 13-16 November, pp. 557-558.
[37] S.B. David and P. Mermelstein, “Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences,”IEEE Trans. Acoust. Speech,Signal Processing,ASSP-28,pp.357-366,1980.
[38]S. Furui, Digital Speech Processing, Synthesis, and Recognition, New York: Marcel Dekker, 1989.
[39]Z. Dokur, T. Olmez and E. Yazgan, “Comparison of discrete wavelet and Fourier transform for ECG beat classification,” Electron. Lett., 35: 1502-1504, 1999.
[40]Zhang, Y. and Nishi, A., “Low-pressure air motor for wall-climbing robot actuation”, Mechatronics, vol. 13, no. 4, pp. 377-392, May 2003.
[41]Zarei, J. and Poshtan, J., “Bearing fault detection using wavelet packet transform of induction motor stator current”, Tribology International, Vol. 40, Issue 5, pp. 763-769, 2007.
[42]W.H Chang and K.P Lin “A Real-Time PVC Detection Algorithm for Microprocessor-Based Bedside Monitoring System ,”Proc. 7th Annual Conf. Of IEEE Eng. In Med. and Biol. Society, pp.841-844, Chicage,I11.,U.S.A.(1985)
指導教授 黃衍任(Yean-Ren Hwang) 審核日期 2008-6-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明