博碩士論文 92323003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.149.24.145
姓名 劉展良(Zhan-Liang Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用微波電漿化學氣相沉積法成長多壁奈米碳管及其電性之研究
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本論文主要利用IC圖案化製程,製作金屬內連線引洞(Vias)的結構再使用微波電漿化學氣相沉積(Microwave Plasma Chemical Vapor Deposition, MPCVD),以Ta的良好特性當作催化劑Ni的阻障層及上下電極,成長多壁奈米碳管(Multi-wall Carbon Nanotube, MWCNT)來當做積體電路中內連線的材料。
本實驗配合掃描式電子顯微鏡(SEM)、拉曼光譜儀(Raman Spectroscopy)和I-V量測儀,探討在基板400oC下不同製程參數對 奈米碳管的型態及電性的影響。結果發現在不同前處理電漿功率與不同前處理時間的參數中,當前處理電漿功率越大、前處理時間越長,奈米碳管的直徑會減小、密度會增大,結構的電阻值會降低。在不同成長電漿功率的參數中,奈米碳管的石墨化程度隨著成長電漿功率的增加而上升,結構的電阻值也因奈米碳管石墨化程度越好而下降。而在不同甲烷流量比例的參數中,15%的甲烷流量比例擁有最好的石墨化程度,以及最低的結構電阻值。實驗中還利用不同的溫度量測奈米碳管的電性,探討溫度對奈米碳管電性的影響,結果觀察到奈米碳管的電阻會隨著溫度下降而增加。最後以Ta和TiN做為阻障層探討奈米碳管的型態,發現利用Ta為阻障層,成長奈米碳管,其直徑會較TiN阻障層來的小。
關鍵字(中) ★ 內連線
★ 奈米碳管
關鍵字(英) ★ interconnect
★ carbon nanotube
論文目次 目錄
摘要 i
謝誌 ii
目錄 iii
表圖目錄 v
第一章 緒論
1.1 前言 1
1.2 研究動機 3
第二章 奈米碳管介紹
2.1 奈米碳管的起源 5
2.2 奈米碳管的晶體結構 7
2.3 奈米碳管的成長機制 10
2.4 奈米碳管的應用 11
2.5 奈米碳管的合成 14
第三章 實驗方法與設備
3.1 實驗流程 18
3.2 二極體元件製作流程 20
3.3 拉曼分析結構 24
3.4 不同尺寸接觸孔洞的製作 24
3.5 實驗儀器簡介 26
第四章 結果與討論
4.1 製程參數對奈米碳管型態的影響 30
4.1.1 前處理電漿功率對奈米碳管型態的影響 30
4.1.2 成長電漿功率對奈米碳管型態的影響 31
4.1.3 甲烷流量比例對奈米碳管型態的影響 32
4.1.4 前處理時間對奈米碳管型態的影響 33
4.2 製程參數對奈米碳管石墨化的影響 34
4.2.1 前處理電漿功率對奈米碳管石墨化的影響 34
4.2.2 成長電漿功率對奈米碳管石墨化的影響 34
4.2.3 甲烷流量比例對奈米碳管石墨化的影響 35
4.2.4 前處理時間對奈米碳管石墨化的影響 36
4.3 奈米碳管型態對電性的影響 37
4.4 奈米碳管石墨化程度對電性的影響 38
4.5 低溫下奈米碳管的電性 39
4.6 以TiN和Ta為阻障層奈米碳管型態的探討 42
4.7 比較銅內連線與奈米碳管內連線 44
第五章 結論 69
參考文獻 70
參考文獻 參考文獻
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354(1991)56
[2] D.S. Bethune, C.H Kiang, Saroy, “Cobalt-caralyzed growth of carbon
nanotubes with single-atomic-layerwalls”, Nature 363(1993)605
[3] H.M. Cheng, Q.H. Yang, C. Liu, “Hydrogen storage in carbon nanotubes”,
Carbon,39(2001)1447
[4] A.K.M.F. Kibria, Y.H. Mo, K.S. Park, K.S. Nahm, M.H. Yun, “Electrochemical
hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH
medium”, International Journal of Hydrogen Energy 26(2001)823
[5] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J.
Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature
386(1997)377
[6] S.J. Tans, A.R.M. Verschueren, C. Dekker, “Room-temperature transistor
based on a single carbon nanotube”, Nature 393(1998)49
[7] C. Thelander, M.H. Magnusson, K. Deppert, L. Samuelson, P.R. Poulsen, J.
Nygard, J. Borggreen, “Gold nanoparticle single-electron transistor with
carbon nanotube leads”, Appl. Phys. Lett. 79(2001)2106
[8] P.W. Chiu, G.S. Duesberg, U.D. Weglikowska, “Interconnection of carbon
nanotubes by chemical functionalization”, Appl. Phys. Lett. 80(2002)3811
[9] S.J. Tans, A.R.M. Verschueren, C. Dekker, “Room-temperature transistor
based on a single carbon nanotube”, Nature 393(1998)49
[10] C. Thelander, M.H. Magnusson, K. Deppert, L. Samuelson, P.R. Poulsen, J.
Nygard, J. Borggreen, “Gold nanoparticle single-electron transistor with
carbon nanotube leads”, Appl. Phys. Lett. 79(2001)2106
[11] P.W. Chiu, G.S. Duesberg, U.D. Weglikowska, S. Roth, “Interconnection of
carbon nanotubes by chemical functionalization”, Appl. Phys. Lett.
80(2002)3811
[12] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, “Carbon nanotubes in
interconnect application”, Mircoelectronic Engineering 64(2002)399
[13] Kaushik Roy, “Circuit modeling of carbon nanotube interconnect amd their
performance estimation in VLSI design”, Computational Electronics
[14] http://www.mos.org/cst/article/4864/3.html
[15] B.Q. Wei, R. Vajtal, P.M. Ajayan, “Reliability and current carrying
capacity of carbon nanotubes”, Appl. Phys. Lett. 79(2001)1172
[17] Rodney S. Ruoff “Mechanical and thermal properties of carbon nanotube” ,
6(1995)21
[21] Rice University:Rick Smalley’s Group Home Page-Image Gallery
[22] D.S. Bethune, C.H Kiang, Saroy ”Cobalt-caralyzed growth of carbon
nanotubes with single-atomic-layerwalls”, Nature 363(1993)605
[23] TH. Henning, F. Salama, “Carbon in the Universe”, Science,
282(1998)2204
[24] 成會明, 張勁燕, “奈米碳管”, 五南圖書出版股份有限公司
[25] R.T.K. Baker, P.S. Harries, “Chemistry and Physics of Carbon”, Marcel
Dekker, New York(1978) 83
[26] S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey,F.
Derbyshire,”Model of carbon nanotube growth through chemical vapor
deposition”, Chem. Phys. Lett. 315(1999)25
[27] B.Q. Wei, R. Vajtal, P.M. Ajayan, “Reliability and current carrying
capacity of carbon nanotubes”, Appl. Phys. Lett. 79(2001)1172
[28] D.W. Austin, A.A. Puretzky, D.B. Geohegan, P.F. Britt, M.A. Guillorn, M.L.
Simpson, “The electrodeposition of metal at metal/carbon nanotube
junctions”, Chem. Phys. Lett. 361(2002)525
[29] Y.S. Han, J.K. Shin, S.T. Kim, “Synthesis of carbon nanotube bridges on
patterned silicon wafers by selective lateral growth”, Appl. Phys.
90(2001)5731
[30] S. Frank, P. Poncharal, Z.L. Wang, Walt A. de Heer, “Carbon nanotube
quantum resistors“, Science 280(1998)1774
[31] H.M. Cheng, Q.H. Yang, C. Liu, “Hydrogen storage in carbon nanotubes”,
Carbon 39(2001)1447
[32] A.K.M.F. Kibria, Y.H. Mo, K.S. Park, K.S. Nahm, M.H. Yun,
“Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon
nanotubes in KOH medium”, International Journal of Hydrogen Energy
26(2001)823
[33] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J.
Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature
386(1997)377
[34] J. Kong, N.R. Franklin, C. Zhou, Science 287(2000)622
[35] Y. Homma, T. Yamashita, Y. Kobayashi, T. Ogino, “Interconnection of
nanostructures using carbon nanotubes”, Phys. B 323(2002)122
[36] Y.S. Han, J.K. Shin, S.T. Kim, “Synthesis of carbon nanotube bridges on
patterned silicon wafers by selective lateral growth”, Appl. Phys.
90(2001)5731
[37] Y.H. Lee, Y.T. Jang, C.H. Choi, E.K. Kim, B.K. Ju, D.H. Kim, C.W. Lee,
S.S. Yoon”, Direct nano-wiring carbon nanotube using growth barrier: a
possible mechanism of selective lateral growth”, Appl. Phys. 91(2002)6044
[38] Y.S. Park, K.S. Kim, H.J. Jeong, W.S. Kim, J.M. Moon, K.H. An, D.J. Bae,
Y.S. Lee, G.S. Park, Y.H. Lee, “Low pressure synthesis of single-walled
carbon nanotubes by arc discharge”, Synthetic Metals 126(2002)245
[39] H.J. Lai, M.C.C. Lin, M.H. Yang A.K. Li, “Synthesis of carbon nanotubes
using polycyclic aromatic hydrocarbons as carbon sources in an arc
discharge”, Materials Science and Engineering C 16(2001)23
[40] T.W. Ebbesen, P.M. Ajayan, H. Hiura, K. Tanigaki, “Purification of
nanotubes”, Nature 367(1994)519
[41] M.J. Yacaman, M.M. Yoshida, L. Rendon, J.G. Saniesteban, “Catalytic
growth of carbon microtubules with fullerene structure”, Appl. Phys.
Lett. 62(1993)202
[42] T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley,
Chem. Phys. Lett. 243(1995)49
[43] R. Andrewsa, D. Jacques, “Investigations of single-wall carbon nanotube
growth by time-restricted laser vaporization”,
Chem. Phys. Lett. 303(1999)467
[44] J.H. Han, S.H. Choi, T.Y. Lee, J.B. Yoo, C.Y. Park, H.J. Kim, I.T. Han, S.
Yu, W. Yi, G.S. Park, M. Yang, N.S. Lee, J. M. Kim, “Effects of growth
parameters on the selective area growth of carbon nanotubes”, Thin Solid
Films 409(2002)126
[45] Y.S. Woo, D.Y. Jeon, I.T. Han, N.S. Lee, J.E. Jung, J.M. Kim, “In situ
diagnosis of chemical species for the growth of carbon nanotubes in
microwave plasma-enhanced chemical vapor deposition”, Diamond and Related
Materials 11(2002)59
[46] U. Kim, R. Pcionek, D.M. Aslam, D. Tomanek, “Synthesis of high-density
carbon nanotube films by microwave plasma chemical vapor deposition”,
Diamond and Related Materials 10(2001)1947
[47] W.D. Zhang, J.T.L. Thong, W.C. Tjiu, L.M. Gan, “Fabrication of vertically
aligned carbon nanotubes patterns by chemical vapor deposition for field
emitters”, Diamond and Related Materials 11(2002)1638
[48] Y. Zhang, Nathan W. Franklin, Robert J. Chen, Hongjie Dai, “Metal coating
on suspended carbon nanotubes and its implication to metal-tube
interaction”, Chem. Phys. Lett. 331(2000)35
[49] W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, S. Xie, “Raman
characterization of aligned carbon nanotubes produced by thermal
decomposition of hydrocarbon vapor”, Appl. Phys. Lett. 19(1997)70
[50] 鄭木棋, “奈米碳管元件之製作與分析”, 國立中央大學機械工程研究所 碩士論文
[51] Crespi VH. Phys. Rev. B. “Relations between global and local topology in
multiple nanotube junctions “, 58(1998)12671
[52] F. Wakaya, K. Katayama, K. Gamo, ”Contact resistance of multiwall carbon
nanotubes”, Microelectronic Engineering 67(2003)853
[53] M.P. Anantram, ”Coupling of carbon nanotubes to metallic contacts”,
Phys. Rev. B 14(2000)221
[54] M.S. Fuhrer, Marvin L. Cohen, A. Zettl, Vincent Crespi, ”Localization in
single-wall carbon nanotubes”Solid State Communications 109(1999)105
[55] David Mann, Ali Javey, Jin Kong, Qian Wang, Hongjie Dai, “Ballistic
Transport in Metallic Nanotubes With Reliable Pd Ohmic Contacts”
[56] Navin Srivastava and Kaustav Banerjee , “A comparative scaling analysis
of metallic and carbon nanotube interconnections for nanometer scale VLSI
technologies”, VMIC (2004)393
指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2005-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明