博碩士論文 92323012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.118.140.78
姓名 鄧軒宇(Hsuan-yu Teng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Sn-3.5Ag-0.5Cu無鉛銲錫受階梯狀負荷之潛變性質
(Creep Properties of Sn-3.5Ag-0.5Cu Lead-Free Solder under Step-Loading)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討電子構裝用Sn-3.5Ag-0.5Cu無鉛銲錫受階梯狀負荷的潛變行為以及求出一套適合此潛變行為的壽命評估模式。潛變實驗採固定溫度下受二階段應力以及固定應力下受二階段溫度兩種方式進行,並利用掃描式電子顯微鏡(SEM)來觀察此無鉛銲錫之潛變破壞特徵。
實驗結果顯示,此款無鉛銲錫在受兩階段應力或溫度的潛變狀況下,由於負荷大小的次序不同,的確會對材料造成不同程度的損害累積。在本實驗中,第一階段負荷條件切換至第二階段負荷條件時,由高到低的負荷次序會比由低到高的負荷次序在第二階段對材料產生更大的損害。此外,受階梯狀負荷時,對於由高到低的負荷次序,其在第二階段的潛變速率會高於受同負荷條件的單一負荷之潛變速率。然而,在由低到高的負荷次序下,第二階段的潛變速率相較於所對應的單一負荷潛變速率,並無明顯的不同。常用的線性損壞模式無法提供此款無鉛銲錫材料準確的壽命預測,亦無法描述不同負荷次序對潛變壽命所造成的不同影響。本文所提出一修正型非線性潛變損害累積模式,對此種材料在受二階階梯狀負荷下可提供合理的壽命預測,也正確的描述負荷次序對材料損害及壽命產生的效應,即是,壽命比率值的總合對在低至高的負荷次序下,會大於由高至低的負荷次序。
由SEM觀察破斷後的試棒得知,在破斷的表面可以發現相當數量的延性小孔洞。此外,在此款無鉛銲錫中可發現許多微小孔洞以及微裂縫會形成在相界以及介金屬與錫基的界面上,應為潛變損害的起始處。
摘要(英) The purpose of this study is to investigate the creep behavior and develop a suitable creep damage model for a lead-free Sn-3.5Ag-0.5Cu solder alloy subjected to variable-step creep loading. Creep tests were conducted under two-step loading with various combinations of stress and/or temperature. Fractography analysis with scanning electron microscopy (SEM) was conducted to determine the creep fracture mechanism for the given solder.
Experimental results showed existence of sequence effects on cumulative creep damage for the given ternary alloy under two-step loading or temperature. A high-low sequence is more damaging than a low-high sequence for all given two-step loading/temperature conditions. Furthermore, the creep rate in the second step of a high-low sequence was greater than the corresponding one under single-step loading while no significant difference in creep rate was observed in the second step of a low-high sequence compared with the corresponding one under single-step loading. The linear damage rule could not be applied to predict lifetime and describe sequence effect for the given lead-free solder under varying-step creep loading. A nonlinear cumulative creep damage model was proposed and made reasonably good predictions of creep lifetime for all the given two-step creep testing conditions. This model also predicts the sequence effects that a low-high step loading would produce a larger sum of lifetime fraction than a high-low one.
SEM observations indicated there existed microvoids on the creep fracture surfaces. Creep microvoids and microcracks were found to nucleate at phase boundaries and interfaces between intermetallic compound and Sn matrix for the given Sn-3.5Ag-0.5Cu solder alloy.
關鍵字(中) ★ 次序效應
★ 無鉛銲錫
★ 潛變
關鍵字(英) ★ sequence effect
★ creep
★ lead-free solder
論文目次 LIST OF TABLES IV
LIST OF FIGURES V
1. INTRODUCTION 1
1.1 Background 1
1.2 Lead-Free Solders 2
1.2.1 Sn-Ag Alloys 3
1.2.2 Sn-Ag-Cu Alloys 5
1.3 Creep of Solders 5
1.4 Cumulative Creep Damage Concept 7
1.4.1 Linear Damage Rule 7
1.4.2 Cumulative Creep Damage Function 9
1.5 Purpose and Scope 10
2. EXPERIMENTAL PROCEDURES 12
2.1 Material and Specimen Geometry 12
2.2 Creep Test 12
2.3 Microstructural and Fractography Analyses 13
3. RESULTS AND DISCUSSION 14
3.1 Microstructure 14
3.2 Creep Behavior under Single-Step Loading 14
3.3 Creep Lifetime Analysis 15
3.3.1 Linear Damage Rule 16
3.3.2 Sequence Effect 17
3.3.3 Nonlinear Cumulative Creep Damage Function 19
3.4 Fractography Analysis 25
4. CONCLUSIONS 26
REFERENCES 27
TABLES 31
FIGURES 39
參考文獻 1. H. H. Manko, Solder and Soldering, 2nd Ed., McGraw-Hill, Inc., New York, 1979.
2. W. J. Plumbridge, “Review: Solders in Electronics,” Journal of Materials Science, Vol. 31, 1996, pp. 2501-2514.
3. W. J. Plumbridge, “Structural Integrity in Electronics,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 27, 2004, pp. 723-734.
4. 菅沼 克昭, 鉛付技術, 工業調查會, 日本, 2001. (日文)
5. Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Sciences, Michigan, 1997.
6. E. P. Wood, “ In Search of New Lead-Free Electronic Solders,” Journal of Electronic Materials, Vol. 23, 1994, pp. 709-714.
7. B. Richards and K. Nimmo, “An Analysis of the Current Status of Lead-Free Soldering: Update 2000,” UK Department of Trade and Industry, London, 2000.
8. M. R. Harrison and J. H. Vincent, “IDEALS: Improved Design and Environment Aware Manufacturing of Electrics Assemblies by Lead-Free Soldering,” pp. 98-104 in Proceeding of the 12th Microelectronics and Packing Conference, IMAPS Europe, Cambridge, 1999.
9. Report on Research and Development on Lead-Free Soldering, Japan Electronic Industry Development Association, Tokyo, 2000.
10. Alloy Phase Diagrams, ASM Handbook, Vol. 3, ASM International, Materials Park, OH, 1992, pp. 2.1-2.260.
11. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-Free Solder Alloy with Superior Mechanical Properties,” Applied Physics Letters, Vol 63, 1993, pp. 15-17.
12. IPC Roadmap: A Guide for Assembly of Lead-Free Electronics, 4th Draft, IPC, Northbrook, IL, June, 2000.
13. W. Yang, L. E. Feltion, and R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints,” Journal of Electronic Materials, Vol. 24, 1995, pp. 1465-1472.
14. T. B. Massalski, Binary Alloy Phase Diagrams, 2nd Ed., ASM International, Ohio, 1990, p. 1409.
15. Y. Kariya and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn, and In) Solder alloys,” Journal of Electronic Materials, Vol. 27, 1998, pp. 1229-1235.
16. V. I. Igoshev, J. I. Kleiman, D. Shangguan, S. Wong, and U. Michon, “Fracture of Sn-3.5%Ag Solder Alloy under Creep,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1356-1361.
17. W. J. Plumbridge, C. R. Gagg, and S. Peters, “The Creep of Lead-Free Solders at Elevated Temperatures,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1178-1183.
18. S. G.. Jadhav, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, “Stress Relaxation Behavior of Composite and Eutectic Sn-Ag Solder Joints,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1197-1205.
19. M. R. Harrison, J. H. Vincent, and H. A. H. Steen, “Lead-Free Reflow Soldering for Electronics Assembly,” Soldering and Surface Mount Technology, Vol. 13, 2001, pp. 21-38.
20. L. Ye, Z. H. Lai, J. Liu, and A. Thoen, “Microstructure Investigation of Sn-0.5Cu-3.5Ag and Sn-3.5Ag-0.5Cu-0.5B Lead-Free Solders,” Soldering and Surface Mount Technology, Vol. 13, 2001, pp. 16-20.
21. S. Chada, A. Hermann, W. Laub, R. Fournelle, and A. Achar,. “Microstructural Investigation of Sn-Ag and Sn-Pb-Ag Solder Alloys,” Solder and Surface Mount Technology, Vol. 9, 1997, pp. 9-13.
22. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys,” Journal of Electronic Material, Vol. 29, 2000, pp. 1122-1136.
23. C. M. Miller, I. E. Anderson, and J. F. Smith, “A Viable Tin-Lead Subsitute: Sn-Ag-Cu,” Journal of Electronic Materials, Vol. 23, 1994, pp. 595-601.
24. M. Li, K. Lee, D. Oisen, W. Chen, B. Tan, and S. Mhaisalkar, “Microstructure, Joint Strength and Failure Mechanisms of SnPb and Pb-Free Solders in BGA Packages,” IEEE Transactions on Electronic Package Manufacture, Vol. 25, 2002, pp.185-192.
25. K. Jonnalagadda, M. Peter, and A. Skipor, “Mechanical Bend Fatigue Reliability of Lead-Free PBGA Assemblies,” pp. 915-918 in Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, IEEE, Inc., San Diego, CA, USA, 2002.
26. J. H. Lau, Solder Joint Reliability-Theory and Applications, Van Nostrand Reinhold, New York, USA, 1991.
27. R. P. Skelton, High Temperature Fatigue: Properties and Prediction, Elsevier Applied Science, New York, USA, 1987.
28. H. G. Song, J. W. Morris, Jr., and F. Hua, “Anomalous Creep in Sn-Rich Solder Joints,” Materials Transactions, Vol. 43, 2002, pp. 1874-1853.
29. M. L. Huang and L. Wang, “Creep Behavior of Eutectic Sn-Ag Lead-Free Solder Alloy,” Journal of Materials Research, Vol. 17, 2002, pp. 2897-2903.
30. D. Y. Chu, “Creep Behavior of Sn-3.5Ag and Sn-3.5Ag-0.5Cu Lead-Free Solders,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2004.
31. J. E. Dorn and L. A. Shepard, “What We Need to Know About Creep,” pp. 3-30 in Symposium on Effect of Cyclic Heating and Stressing on Metals at Elevated Temperatures, ASTM Special Technical Publications 165, American Society for Testing and Materials, Philadelphia, USA, 1954.
32. E. L. Robinson, “Effect of Temperature Variation on the Creep Strength of Steels,” Transactions ASME, Vol. 60, 1938, pp. 253-259.
33. Y. Lieberman, “Relaxation, Tensile Strength and Failure of EI612 and 20Kh1F-L Steels,” Mettaloved, Term. Obrabotka Metal, Vol. 4, 1962, pp.6-13.
34. T. Bui-Quoc, “Engineering Approach for Cumulative Damage in Metals under Creep Loading,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 101, 1979, pp. 337-343.
35. D. G. Pavlou, “Creep Life Prediction under Stepwise Constant Uniaxial Stress and Temperature Conditions,” Engineering Structures, Vol. 23, 2001, pp. 656-662.
36. “Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Material,” ASTM E139-96, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 255-265.
37. M. E. Loomans and M. E. Fine, “Tin-Silver-Copper Eutectic Temperature and Composition,” Metallurgical and Materials Transactions A, Vol. 31A, 2000, pp.1155-1162.
38. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, USA, 1988.
39. J. Yu, D. K. Joo, and S. W. Shin, “Rupture Time Analyses of the Sn-3.5Ag Alloys Containing Cu or Bi,” Acta Materialia, Vol. 50, 2002, pp. 4315-4324.
40. D. K. Joo, J. Yu, and S. W. Shin, “Creep Rupture of Lead-Free Sn-3.5Ag-Cu Solders,” Journal of Electronic Materials, Vol. 32, 2003, pp. 541-547.
41. V. I. Igoshev, J. I. Kleiman, D. Shangguan, C. Lock, and S. Wong, “Microstructure Changes in Sn-3.5Ag Solder Alloy During Creep,” Journal of Electronic Materials, Vol. 27, 1998, pp. 1367-1371.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2005-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明