博碩士論文 92323013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.146.152.147
姓名 何萬青(Wan-Ching Ho)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱化學氣相沉積法製備橫向奈米碳管之研究
(Properties of lateral carbon nanotube grown by thermal CVD)
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
實驗利用常壓熱化學氣相沉積(Thermal Chemical Vapor Deposition, Thermal CVD)成長橫向奈米碳管。配合I-line 微影技術,及金屬層蝕刻定義元件形狀。利用單因子實驗,設定不同操作參數,如製程溫度、乙烯在碳源中比例、甲烷流量、製程時間、不同載流氣體種類等,而得到數量、形貌、品質優良橫向奈米碳管,並結合微影
定義合成元件結構。並利用拉曼散射光譜(Raman Spectroscopy)分析,判定奈米碳管石墨化程度好壞。橫向奈米碳管元件利用I-V 電性量測分析,探討元件電性穩定性。並透過公式推算,計算元件電阻。由於元件成長橫向奈米碳管之催化劑為鎳金屬層,亦藉由本實驗設計結構,計算鎳金屬層和橫向奈米碳管之接觸電阻問題。
奈米碳管之物理特性廣受各界的期待,但由於成長定位方式,及製程相容之不成熟,故奈米碳管之應用產品仍在實驗階段。本次實驗成功利用不同製程參數,控制橫向奈米碳管的成長數量及品質。利用兼容IC 製程,配合微影定義元件形狀,傳統成長奈米碳管技術成長橫向奈米碳管。也由設計的元件結構合成橫向奈米碳管橋建元件,整
合元件之品質與穩定,對未來奈米碳管之定位與應用盡一分心力。
關鍵字(中) ★ 接觸電阻
★ 拉曼散射光譜
★ 熱化學氣相沉積法
★ 奈米碳管
關鍵字(英) ★ contact resistance
★ Raman Spectroscopy
★ Thermal CVD
★ carbon nanotube
論文目次 目錄
摘要……………………………………………………………………..Ⅰ
目錄……………………………………………………………………..Ⅱ
表目錄…………………………………………………………………..Ⅳ
圖目錄…………………………………………………………………..Ⅴ
第一章緒論…………………………………………………………..1
1.1 前言………………………………………………………….1
1.2 研究動機………………………………………..………….4
第二章奈米碳管之簡介..……………………………………………6
2.1 奈米碳管之製備方法…………………………………….. 6
2.2 熱化學沉積法……………………………………………..10
2.3 奈米碳管的排列結構及電性……………………………..13
第三章實驗方法………………………...………………………..16
3.1 利用熱裂解化學氣相沉積法成長奈米碳管……………..16
3.2 橫向奈米碳管之成長…………………………………....20
3.3 整合橫向奈米碳管到元件製作…………………………..22
3.4 拉曼散射……………………………….………………...24
3.5 橫向成長奈米碳管元件之電性量測….………………...26
3.6 實驗儀器簡介……………………………………………..29
第四章實驗結果與討論…………………………………………33
4.1 奈米碳管的結構分析與鑑定…..………………………..33
4.2 橫向結構與成長橫向奈米碳管…………………………..35
4.3 成長目標………………………………….……………...38
4.4 實驗參數對橫向奈米碳管石墨化的影響及電性分析....40
4.5 不同乙烯在碳源中比例的影響….……………………...43
4.6 不同甲烷流量之影響………….………………………...53
4.7 利用氮氣為載氣之影響………….……….……………..58
4.8 利用微波電漿化學氣相沉積成長橫向奈米碳管..……..69
第五章結論………………………………………………………75
參考文獻………………………………………………………………76
參考文獻 參考文獻
[1] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical propertie of carbon
nanotubes, Imperial College Press, (1998)
[2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol.354, 1991,
pp.56-58.
[3] G. Overney, W. Zhong, and D. Z. Tomanek, Phys. D, 27 (1993) 93
[4] S. Ihara, S. Itoh, “Helically coiled and toroidal cage forms of graphitic carbon”,
Carbon, 33 (1995) 931
[5] H. Cui, O. Zhou, and B. R. Stoner, “Deposition of aligned bamboo-like carbon
nanotubes via microwave plasma enhanced chemical vapor deposition”,
Journal of Applied Physics, 88 (2000) 6072
[6] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy,
“A formation mechanism for catalytically grown helix-shaped graphite
nanotubes”, Science, 265 (1994) 635
[7] X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chem, “Synthesis of multi-walled carbon
nanotubes by microwave plasma-enhanced chemical vapor deposition”, Thin
Soild Films, 390 (2001) 130
[8] Y. Wen, and Z. Shen, “Synthesis of regular coiled carbon nanotubes by
Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis”,
Carbon, 39 (2001) 2369
[9] 楊正杰, 張鼎張, “銅金屬和低介電常數材料與製程”, 第七卷, 第四期。
[10] Proceeding of Meeting of The International Technology Roadmap for
Semiconductors (ITRS), December 2003.
[11] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon
Nanotubes, Imperial College Press (ICP), 1998.
[12] M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young’s
modulus observed for induvidual carbon nanotubes”, Nature, Vol.381, 1996,
pp.678-680.
[13] N. Hamada, S. I. Sawada, and A. Oshiyama, “New one-dimensional counductors:
graphitic microtubules”, Physics Review Letter, Vol.68, 1992, pp.1579-1581.
[14] Q. H. Wang, T. D. Corrigan, J. Y. Dai, and R. P. H. Chang, “Field emission from
nanotube bundle emitters at low field”, Appl. Phys. Lett., 70 (1997) 3308
[15] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P.
Nordlander, D. T. Colbert, and R. E. Smalley, ”Unraveling nanotubes: field
emission from an atomic wire”, Science, 269 (1995) 1550
[16] W. A. D. Heer, A. Chatelain, and D. Ugarte, ”A carbon nanotube field-emission
electron source”, Science, 270 (1995) 1179
[17] Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, and E. W. Seeling, “A
nanotube-based field-emission flat panel display”, Appl. Phys. Letts., 72 (1998)
2912
[18] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density
from carbon nanotube field emitters”, Appl. Phys. Lett., 75 (1999) 873
[19] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J.
E. Jung, N. S. Lee, G. S. Park, and J. m. Kim, ”Fully sealed, high-brightness
carbon-nanotube field-emission display”, Appl. Phys. Letts., 75 (1999) 3129
[20] P. G. Collins, and A. Zettl, “Unique characteristics of cathode carbon-nano
tube-matrix field emitters”, Phys. REV. B, 55 (1997) 9391
[21] H. J. Kim, J. H. Han, W. S. Yang, J. B. Yoo, C. Y. Park, I. T. Han, Y. J. Park, Y. W.
Jin, J. E. Jung, N. S. Lee, and J. M. Kim, ”Fabrication of field emission triode
using carbon nanotubes”, Materials Science and Emgineering C, 16 (2001) 27
[22] J. M. Bonard, H. Kind, T. Stockli, and L. O. Nilsson, “Field emission from
carbon nanotubes: the first five years”, Solid-State Electronics, 45 (2001) 893
[23] A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: a critical
review”, Solid-State Electronics, 45 (2001) 963
[24] Xiaolei Liu, Chenglung Lee, Chongwu Zhou, and Jie Han, “Carbon nanotube
field-effect inverters”, Applied Physics Letters, Vol.79, No.20, 12 November
2001, pp.3329-3331.
[25] Richard Martel, Hon-Sum Philip Wong, Kevin Chan, and Phaedon Avouris,
“Carbon nanotube field effect transistors for logic applications”, Proceeding of
International Electron Device Meeting(IEDM)2001, 9-12 December 2001,
Washington DC, USA, pp.159-162.
[26] R. Martel, V. Derycke, J. Appenzeller, S. Wind, and Ph. Avouris, “Carbon
nanotube field-effect transistors and logic circuits”, Proceeding of Design
Automation Conference 2002, 10-14 June 2002, pp.94-98.
[27] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and, C. M. Lieber,
“Carbon nanotube–based nonvolatile random access memory for molecular
computing” Science, 289 (2000) 94
[28] H. M. Cheng, Q. H. Yang, and C. Liu, “Hydrogen storage in carbon nanotubes”,
Carbon, 39 (2001) 1447
[29] A. K. M. F. Kibria, Y. H. Mo, K. S. Park, K. S. Nahm, and M. H. Yun,
“Electrochemical hydrogen storage behaviors of CVD, AD and LA grown
carbon nanotubes in KOH medium”, International Journal of Hydrogen
Energy, 26 (2001) 823
[30] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J.
Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386
(1997) 377
[31] W. Qikun, Z. Changchun, L. Weihua, and W. Ting, “Hydrogen storage by carbon
nanotube and their films under ambient pressure”, International Journal of
Hydrogen Energy 27 (2002) 497 – 500
[32] C. Cantalinia, L. Valentinib, L. Lozzic, I. Armentanob, J. M. Kennyb, and S.
Santucci, “NO2 gas sensitivity of carbon nanotubes obtained by plasma
enhanced chemical vapor deposition”, Sensors and Actuators B 93 (2003)
F333–337
[33] J. Chung, K. H. Lee, and J. Lee, “Multi-walled carbon nanotube sensors”, Solid
State Sensors, Actuators and Microsystems 2E80.P
[34] A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas
ionization sensors using carbon nanotubes”, Narure , 424 (2003) 171
[35] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai,
“Nanotube molecular wires as chemical sensors”, Science, 287 (2000) 622
[36] P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity
of electronic properties of carbon nanotubes”, Science, 287 (2000) 1801
[37] Y. T. Jang, C. H. Choi, S. I. Moon, J. H. Ahn, Y. H. Lee, and B. K. Ju, “A novel
micro-gas sensor using laterally grown grown carbon nanotube”, Solid State
Sensors, Actuators and Microsystems (2003) 3E49P
[38] F. Kreupl, A. P. Graham, G.. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger,
and W. Honlein, “Carbon nanotubes in interconnect applications”,
Microelectronic Engineering 64 (2002), pp.399-408.
[39] B. Q. Wei, R. Vajtal, and P. M. Ajayan, “Reliability and current carrying capacity
of carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 1172
[40] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor
based on a single carbon nanotube”, Nature, 393 (1998) 49
[41] C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson. P. R. Poulsen, J.
Nygard, and J. Borggreen, “Gold nanoparticle single-electron transistor with
carbon nanotube leads”, Appl. Phys. Lett., 79 (2001) 2106
[42] P. W. Chiu, G. S. Duesberg, U. D. Weglikowska, and S. Roth, “Interconnection of
carbon nanotubes by chemical functionalization”, Appl. Phys. Lett., 80 (2002)
3811
[43] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon
nanotube field-effect transistors”, Nature, 242 (2003) 654
[44] H. T. Soh, C. F. Quate, A. F. Morpurgo, C. M. Marcus, J. Kong, and H. Dai,
“Integrated nanotube circuits: Controlled growth and ohmic contacting of
single-walled carbon nanotubes” Appl. Phys. Lett., 75 (1999) 627
[45] A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, M.
Lundstrom, and H. Dai, “Self-Aligned Ballistic Molecular Transistors and
Electrically Parallel Nanotube Arrays”, NANO LETTER, Vol. 4 (2004)
1319-1322
[46] Y. S. Park, K. S. Kim, H. J. Jeong, W. S. Kim, J. M. Moon, K. H. An, D. J. Bae, Y.
S. Lee, G. S. Park and Y. H. Lee, “Low pressure synthesis of single-walled
carbon nanotubes by arc discharge”, Synthetic Metals, 126 (2002) 245
[47] H. J. Lai, M. C. C. Lin, M. H. Yang and A. K. Li, “Synthesis of carbon nanotubes
using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge”,
Materials Science and Engineering C, 16 (2001) 23
[48] H. Zeng, L. Zhu, G. Hao, and R. Sheng, “Synthesis various forms of carbon
nanotubes by AC arc discharge”, Carbon, 36 (1998) 259
[49] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. D. L. Chapelle, S. Lefrant,
P. Deniard, R. Lee, and J. E. Fisxher, “Large-scale production of single-walled
carbon nanotubes by the electric-arc technique”, nature, 388 (1997) 756
[50] B. I. Yakobson and R. E. Smalley, American Scientist, 85 (1997) 324
[51] Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, J. M.
Kim, “Low temperature synthesis of carbon nanotube by microwave
plasma-enhanced chemical vapor deposition”, Synthetic Metals 108 (2000)
159-163
[52] X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chen, “Synthesis of multi-walled
carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”,
Thin Solid Films, 390 (2001) 130-133
[53] J. H. Han, S. H. Choi, T. Y. Lee, J. B. Yoo, C. Y. Park, H. J. Kim, I. T. Han, S. Yu,
W. Yi, G. S. Park, M. Yang, N. S. Lee, and J. M. Kim, “Effects of growth
parameters on the selective area growth of carbon nanotubes”, Thin Solid
Films, 409 (2002) 126
[54] Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim, “In situ
diagnosis of chemical species for the growth of carbon nanotubes in
microwave plasma-enhanced chemical vapor deposition”, Diamond and
Related Materials, 11 (2002) 59
[55] U. Kim, R. Pcionek, D. M. Aslam, and D. Tomanek, “Synthesis of high-density
carbon nanotube films by microwave plasma chemical vapor deposition”,
Diamond and Related Materials, 10 (2001) 1947
[56] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith,
and R. E. Smalley, “Elastic strain of freely suspended single-wall carbon
nanotube ropes”, Appl. Phys. Lett., 74 (1999) 3803
[57] Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J.
Kong, and H. Dai, “Electric-field-directed growth of aligned single-walled
carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 3155
[58] A. Ural, Y. Li, and H. Dai, “Electric-field-aligned growth of single-walled
carbon nanotubes on surfaces”, Appl. Phys. Lett., 81 (2002) 3464
[59] Y. T. Janga, J. H. Ahnb, B. K. Jua, Y. H. Leec, “Lateral growth of aligned
mutilwalled carbon nanotubes under electric field”, Solid State
Communications 126 (2003) 305–308
[60] Y. H. Lee, Y. T. Jang, C. H. Choi, D. H. Kim, C.W. Lee, J. E. Lee, Y. S. Han, S.
S. Yoon, J. K. Shin, S. T. Kim, E. K. Kim, and B. K. Ju, “Direct Nanowiring
of Carbon Nanotubes for Highly Integrated Electronic and Spintronic
Devices”, Adv. Mater. 2001, 13, No. 18
[61] Y. Y. Wei, and G. Eres, “Directed assembly of carbon nanotube electronic
circuits”, Appl. Phys. Lett., 76 (2000) 3759
[62] Y. S. Han, J. K.Shin, and S. T. Kim, “Synthesis of carbon nanotube bridges on
patterned silicon wafers by selective lateral growth”, Appl. Phys. Lett., 90
(2001) 5731
[63] 鄭木棋, “奈米碳管元件之製作與分析”
指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2005-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明