博碩士論文 92323045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.15.203.242
姓名 陳韋旭(Wei-Shu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以氟化銨之光電化學蝕刻法在n-Si(100)單晶表面製作微米溝槽
(Preparation of macro trenches on Si(100) by photo-electrochemical etching in ammonium fluoride solution)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文使用氟化銨蝕刻液,以光電化學方法在n-型(100)矽單晶上,蝕刻出微米級溝槽結構。研究方式利用陽極極化法及定電位蝕刻,在氟化銨溶液中,分別就外加電壓、氟化銨溶液溫度、預蝕孔深度、試片圖案間距等參數,探討其對蝕刻之影響。
研究結果顯示,n-型(100)矽單晶在功率150W 鹵素燈照光下,氟化銨蝕刻液溫度由20,30,40增加到50℃時,2M氟化銨溶液對n-Si(100)的蝕刻孔洞寬度保持一定,而蝕孔深度由58μm增加到88μm。KOH化學預蝕刻結構底部寬度由0μm增加到33μm,蝕刻所得之結構壁厚由39μm減薄至31μm 。
預蝕刻圖形間距110μm,若改變蝕刻電位由0.1V增加到0.8V,則蝕刻所得之結構其孔壁厚度由32μm增加至90μm。外加電位0.8V,於預蝕刻圖形間距170μm~60μm試片,則間距60、80及110μm試片可以製作出孔壁筆直之溝槽結構,而間距140及170μm試片,蝕刻孔洞發生擴孔,以上現象可以由空間電荷與電場偏壓的關係來解釋。
摘要(英) Formation of macro-trench on n-type silicon in the ammonium fluoride solution by photo-electrochemical etching has been investigated in this work. Effect of applied voltage, the temperature of ammonium fluoride electrolyte, the depth of pre-etching and the pitch of pores were discussed in ammonium fluoride solution by dc-potentiodynamic polarization and potentiostatic etching.
n-type(100) silicon under 150W illumination. The depth of etching pores increase from 58μm to 88μm when the temperature of ammonium fluoride solution increases from 20℃ to 50℃. The width of etching pores is same. The wall width of etching structure decrease 39μm to 31μm when the flat bottom of pre-etching structure by KOH increase 0μm to 33μm.
For the pattern with a pitch of 110μm, the wall width of the etching structures increases from 32μm to 90μm when the etching voltage increases from 0.1V to 0.8V. For the etching conducted at 0.8V, we obtained trenches in vertical walls as the pattern with a pitch less than 110μm (e.g., 60, 80 and 110μm) but in curved walls for the pattern with a pitch higher than 110μm (e.g., 140 and 170μm). This difference in trench morphology is delineated by different distribution of the strength of electric field.
關鍵字(中) ★ 光電化學蝕刻
★ n-型Si(100)單晶
★ 氟化銨
關鍵字(英) ★ n-type(100) silicon
★ Photo-electrochemical etching
★ Ammonium fluoride
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅷ
圖目錄 X
壹、簡介 1
一、研究背景 1
1-1 矽晶圓蝕刻技術 1
1-1-1乾式蝕刻技術 1
1-1-2 濕式蝕刻 2
1-1-3 電化學蝕刻 2
二、研究目的 3
貳、原理及文獻回顧 4
一、半導體電化學理論 4
2-1 半導體材料電子能階 4
2-2 電解液的電子能階----絕對電極電位 4
2-3 半導體卅電解液界面 5
2-3-1 平衡狀態 5
2-3-2空間電荷層(space charge region) 7
2-3-3 平帶電位(flat-band voltage) 7
2-3-4半導體電極的光效應 8
二、多孔矽形成機制 9
2-4 矽在氫氟酸電解液中的電流—電壓(I-V)特性 9
2-5 Beale 模型 10
2-6 Zhang 模型 15
2-7 擴散機制模型 17
2-8 矽在氟化銨電解液中的電流—電壓(I-V)特性 17
2-9 光電化學蝕刻製作溝槽結構 18
参、實驗方法 20
3-1試片選擇 20
3-2試片前處理 20
3-3實驗設備 21
3-4蝕刻液選擇 23
3-5電化學方法 23
3-6 ANSYS電場模擬 24
3-7蝕刻表面觀察 24
肆、結果 25
4-1氟化銨溶液濃度 25
4-1-1開路電位(OCP)量測 25
4-1-2 陽極動態極化行為 25
4-1-3 不同濃度氟化銨定電位蝕刻 27
4-2 改變電位蝕刻實驗 28
4-3預蝕刻深度對蝕刻溝槽結構之影響 29
4-4 改變氟化銨蝕刻液溫度 31
4-5 相同間距改變電位蝕刻 32
4-6不同間距定電位蝕刻 32
伍、討論 34
5-1 不同濃度氟化銨溶液之探討 34
5-1-1 開路電位與陽極極化曲線 34
5-1-2 不同濃度氟化銨定電位蝕刻 36
5-2改變電位蝕刻 37
5-3 不同溫度之氟化銨蝕刻液探討 38
5-4預蝕刻深度對蝕刻溝槽結構之影響 39
5-5 相同間距試片改變電位蝕刻 41
5-6 不同間距之試片探討42
陸、結論 44
柒、參考文獻 46
參考文獻 [A﹒Janshoff] A﹒Janshoff﹐K﹒-P﹒S﹒Dancil﹐C﹒Steinem﹐D﹒P﹒Greiner﹐V﹒S﹒-Y﹒Lin﹐C﹒Gurtner﹐K﹒Mosteshariei﹐M﹒J﹒Sailor andM﹒R﹒Ghadiri﹐J﹒Am﹒Chem﹒Soc﹒120﹐12108﹐(1998)
[A﹒J﹒Bard] A﹒J﹒Bard﹐“Electrochemical Methods”﹐pp745-761﹐(2000)
[A. Uhlir] A. Uhlir, Bell Syst. Techn. J., 35, 333, (1956).
[CHUANG] 莊達人,“VLSI製造技術”,高立圖書有限公司, p352~358,(2003)
[C.M.A.Ashruf] C. M. A. Ashruf, P. J. French, P. M. Sarro, R. Kazinczi, X. H. Xia, and J. J. Kelly, “Galvanic etching for sensor fabrication“, J. Micromech. Microeng., 10, 505, (2000).
[D.R. Turner] D.R. Turner﹐J. Electrochem. Soc., 105, 402, (1958)
[G. Barillaro1] G. Barillaro,z A. Nannini, and F. Pieri” Dimensional Constraints on High Aspect Ratio Silicon Microstructures Fabricated by HF Photoelectrochemical Etching”, Journal of The Electrochemical Society, 149 (3)C180-C185 (2002)
[G.Barillaro2] G. Barillaro, A. Nannini, M. Piotto, “Electrochemical etching in HF solution for silicon micromaching“, sensors and actuators, A 102 (2002).
[ H. Fo¨ll] H. Fo¨ll*, M. Christophersen,” Formation and application of porous silicon”, Materials Science and Engineering R 39 (2002) 93–141
[H. Fukidome] H. Fukidome, M. Matsumura “Electrochemical study of atomically flattening process of silicon surface in 40% NH4F solution”, Applied Surface Science 130–132 1998 146–150
[H.J.Lewerenz] H.J. Lewerenz *, H. Jungblut,“ Surface analysis of the electropolishing layer on Si(111) in ammonium fluoride solution“, Electrochimica Acta 45 (2000) 4615–4627
[H. Ohji1] H. Ohji , P.J. French,” Single step electrochemical etching in ammonium fluoride” Sensors and Actuators 74 1999 109–112
[H. Ohji 2] H. Ohji, P. T. J. Gennissen, P. J. French, and K. Tsutsumi, “Fabrication of a beam-mass structure using single-step electrochemical etching for micro structures (SEEMS) “, J. Micromech. Microeng., 10, 440, (2000).
[H. Ohji 3] H. Ohji, P.J. Trimp, P.J. French, “Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid“, Sens. Actuators A, 73, 95, (1999).
[J.A.Walker] J.A.Walker, “The future of MEMS in telecommunications networks“, J. Micromech. Microeng., 10, R1, (2000).
[ J. Hua Ouyang] J. Hua Ouyang and Xin Sheng Zhao,” Direct measurement of the etching rates on Si .111. and silicon dioxide surfaces in 40% ammonium fluoride aqueous solution via atomic force microscopy” JOURNAL OF APPLIED PHYSICS
VOLUME 93, NUMBER 7
[K. J. Chao] K. J. Chao,z S. C. Kao, C. M. Yang,” Formation of High Aspect Ratio Macropore Array on p-Type Silicon” Electrochemical and Solid-State Letters, 3 (10) 489-492 (2000)
[K. Skorupska] K. Skorupska∗, J. Jakubowicz,” Observation of metastable self-organised structure during porous silicon formation” Superlattices and Microstructures 36 (2004) 211–217
[M.I.J.Beale1] M.I.J. Beale, N.G. Chew, M.J, Uren, A.G. Cullis, J.D. Benjamin, “Microstructure and formation mechanism of porous silicon“, Appl. Phys. Lett., 46, 86, (1985).
[M.I.J.Beale 2] M.I.J. Beale, J.D. Benjamin, M.J, Uren, N.G. Chew, A.G. Cullis, “An experimental and theoretical study of the formation and microstructure of porous silicon“, J. Cryst. Growth. 73, 622 (1985).
[M. Nakamura] M. NAKAMURA, MOON-BONG SONG,“ETCHING PROCESSING OF Si(l11) AND Si(100) SURFACES IN AN AMMONIUM FLUORIDE SOLUTION INVESTIGATED BY IN SITU ATR-IR”, Electrochimica Acta, Vol. 41. No. 5. pp. 681- 686, 1996
[M.Tomkiewicz] M. Tomkiewicz, J Electrochem. Soc, 126:2220, (1979).
[P. Kleimann] P. Kleimann,” Formation of wide and deep pores in silicon by electrochemical etching” Materials Science and Engineering B69–70 (2000) 29–33
[R.Angelucci ] R. Angelucci, A. Poggi, L. Dori, G. C. Cadinali, A. Parisini, A. Tagliani, M. Mariasaldi, and F. Cavani, “Permeated porous silicon for hydrocarbon sensor fabrication“, Sens. Actuators A, 74, 1, (1999).
[R.L.Smith1] R.L. Smith, S.F. Chuang, S.D. Collins, “A theoretical model of the formation morphologies of porous silicon“, J. Electro. Mater. 17, 533, (1988).
[R.L.Smith2] R.L. Smith and S.D. Collins﹐J. Appl. Phys.71(8)﹐R1(1992)
[R.W.Fauthauer] R.W. Fauthauer, T. George, A. Ksendzov, and R.P. Vasquez, “Visible luminescence from silicon waters subjected to stain etches“, Appl. Phys. Lett., 60, 995 (1992).
[S. Shih] S. Shih, K.H. Jung, T.Y. Hsieh, J. Sarathy, J.C. Campbell, and D.L. Kwong, “Photoluminescence and formation mechanism of chemically etched silicon“, Appl.Phys. Lett., 60, 1863 (1992).
[S. Traasatti] S. Traasatti, “The absolute electrode potential: an explanatory note“, IUPAC Commission I. 3, electrochemistry, (1984)
[T. Laurell] T. Laurell, L. Wallman, and J. Nilsson, “Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handling“, J. Micromech. Microeng., 9, 369, (1999).
[V. Lehmann 1] V. Lehmann ,properties of electrochemically etched trenches in n-type silicon“, J. Electrochem. Soc., 137, 653, (1990).
[V. Lehmann2] V. Lehmann, J. Electrochem. Soc., 140, 2836, (1993).
[V. Palermo] V. Palermo, E. Susi,b and D. Jonesa,” Morphological and Electrical Characterization of Etched Si Wafers” Journal of The Electrochemical Society, 151 (9) G554-G558 (2004)
[W.P.Gomes] W. P. Gomes, F. Cardon, Prog. Surf. Sci, 12:155, (1982).
[Wu] 吳浩青, 李永舫編著, “電化學動力學“, 科技圖書股份有限公司, p178-185, (2001).
[Xiao] Hong Xiao, “Introduction to semiconductor manufacturing technology“, Pearson Education, p92, (2000).
[X.G.Zhang] X. G. Zhang, S. D. Collins, R. L. Smith, “Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution“, J. Electrochem. Soc., 136, 1561, (1989).
指導教授 林景崎(Jing-Chie Lin) 審核日期 2005-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明