![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:42 、訪客IP:3.133.100.204
姓名 陳興華(Hsin-hwa Chen) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 高強度鋁合金晶粒細化與成型特性研究
(Study on The Grain Refining and Superplasticity Forming Behavior of The High Strength Aluminum Alloys)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 中文摘要
金屬超塑性依據產生的機理可以分成組織超塑性、相變超塑性和應力誘發超塑性三類。而鋁合金超塑性則屬於細晶超塑性,其材料的超塑性質受晶粒大小所影響,相對的也主導著其高溫潛變特性。因此如何細化鋁合金晶粒可視為鋁合金快速成形技術發展之重要條件。本研究為改善高強度鋁合金之性質以擴展其應用性,分別針對析出硬化型之高強度鋁合金7039、7049加鈧研究其對晶粒細化與高溫拉伸潛變特性,以及非析出硬化型鋁合金5083經等通道彎角擠製與氣壓快速成型之超塑性成型特性加以探討。
研究結果顯示:AA7039在添加微量Sc後,常溫抗拉強度無論有無經過退火皆有400MPa以上的表現,而AA7049在添加Sc、Zr和Cu後,其抗拉強度為522MPa,且兩者皆在滾軋率R=20%有較強之抗拉強度。而120、150℃溫度下之人工時效T6處理之拉伸試驗結果則顯示:AA7049加Sc、Zr和Cu之抗拉強度高達660MPa比AA7039加Sc之抗拉強度466MPa抗拉強度提升許多,主要是其結構上含有散佈強化和析出物較多。在高溫拉伸部分,AA7039加Sc在溫度400℃以應變率1×10-2下,伸長量124%為最佳效果。AA7049加Sc、Zr和Cu在溫度400℃以應變率5×10-3,伸長量可達244%。主因在於含有較多晶粒細化劑Sc、Cu和Zr。並且由金相圖中可明顯觀察到AA7049加Sc、Zr和Cu經過500℃、1hr退火,晶粒有明顯的細化現象且有消除擠製流線的作用。
5083 鋁合金經過90°-200℃-Bc8條件之等通道彎角擠製後,能產生小於1μm 之等軸次晶粒結構,Fe 含量較低的5083 鋁合金並且在250℃及450℃的溫度下,使用1×10-3 s-1的應變速率,分別得到266.6%及350%的伸長量,同時具有低溫及高溫的超塑性。ECAE 製程參數的影響,除了使用較小的通道夾角,可以施加較大剪應變於材料之外,不同的擠製方位、擠製溫度及擠製道次,也會導致微結構產生不同的晶粒形狀、晶界性質等,這些因素主導著低溫超塑性期間,動態再結晶的出現與否。高溫超塑性期間,Mn、Fe、Si 元素組成的第二相顆粒,扮演非常重要的角色,Fe 含量較少的第二批5083 鋁合金,在450℃的拉伸測試中,可以獲得較高的m 值與最佳的伸長量。
在研究快速超塑性製程之成型機制方面:5083 鋁鎂合金鈑片利用雙面塗有T50-66 潤滑劑的一個杯狀盒子模具ψ40mmx20mm 深,在溫度500℃做階梯式增壓吹氣成型的完全成形時間為70 sec,得到令人意外的結果,成形時間遠比傳統氣壓成型的操作成形時間少了幾十倍之多。由成型溫度400℃、450℃、500℃的試驗結果以500℃之成形性最佳。成形過程中的應變率分佈,溫度400℃、450 ℃與500℃在成形的各個階段,其中觸底階段高達10-1 s-1,比傳統的10-3 s-1快了非常多。空孔的分佈情形是以單位面積的空孔率做比較,400℃空孔嚴重,其單位面積的空孔率為11.69%,而450 ℃與500℃的空孔明顯減少許多,450 ℃的單位面積的空孔率為2.57%,500℃的單位面積的空孔率為3.54%。依綜合成形時間、成形過程中的應變率分佈、厚度分佈均勻度、空孔分佈情形等結果的比較我們可以明確的得到,500℃的操作溫度,為最佳的操作條件。
摘要(英) Abstract
Aluminum alloys have been generally used because of its opposite strength, light weight, high heat and electric conductivity, superior ductility and easily tomanufacture. One’s early years, Soviet bring up that aluminum alloys have perfect mechanical properties when adding scandium into alloys. This approach has more and more emphasis recently and is used for the frame of bicycles, the head of golf club and so on.
The experiment adopts A7039 alloy and A7049 alloy which are all added about 0.05wt.% and 0.106wt.% scandium respectively.Metal plate is processed by rolling and metal plate changes the rolling reduction ratio and changes the temperature of elongation. By way of changing these parameters, we aspect this method can promote the strength of materials and improve the breadth of 7000 series of aluminum alloys which are added scandium.
The experiment result exhibit that the tensile strength of A7039 alloy and A7049 alloy can promote to 466 MPa and 660 MPa , and elongation can promote to 124% and 244% , at 400℃ by strain rate 1×10-2 and 5×10-3 respectively.We can know that all of the mechanical properties are obvious be promoted when the temperature is 400℃. When R=20%, the maximum yield strength of room temperature is about 400MPa and 522 MPa respectively.
Although the regular AA5083 Al alloy has long been used, its superplastic version has not been intensively or thoroughly studied such that some aspects regarding superplastic AA5083 are unclear. For example, the influence of Fe content on superplastic elongation is almost neglected, and this topic will be explored. Besides, this paper presents one of the minority studies on applying the equal channel angular extrusion (ECAE) to this alloy. It provides a comprehensive knowledge of processing and thus resulting mechanical properties as well as microstructures, which are probably unavailable elsewhere.This paper represents a large scale of experimental work in using the ECAE process on two groups of the AA 5083. There had been high expectation on the ECAE in greatly refining grain size in order to result exceptional superplasticity as most references indicated. However, our large amount of processing and subsequent tensile testing at various conditions did not fully confirm this common impression. The best superplasticity obtained is 350%, which is no superior to the commercially available rolling-type AA5083.
Effect of lubrication on deformation behavior of a superplastic material has been given little attention, although it is important for industrial application. In this paper, a superplastic 5083 Al alloy under bi-axial deformation was investigated by deforming the sheet into a cylindrical die cavity with and without lubrication. Several interrupted tests were performed to bulge the sheets to various depths for two different strain rates, the formed parts were then utilized to evaluate the effect of lubrication on metal flow, thickness distribution, and cavitation. It was found that reducing the interfacial friction by use of a lubricant improved the metal flow after the deformed sheet had made contact with the bottom surface of die. Changes of the metal flow during forming not only developed a better thickness distribution of the formed part, but also reduced cavitation levels.
關鍵字(中) ★ 7039鋁合金
★ 7049鋁合金
★ 5083鋁合金
★ 超塑性
★ 晶粒細化
★ 等通道彎角擠製
★ 超塑性氣壓快速成型
★ 空孔率關鍵字(英) ★ cavity fraction
★ gas forming
★ superplasticity
★ 5083 Al alloy
★ grain refining
★ Equal channel angular extrusion
★ Sc
★ 7049 Al alloy
★ 7039 Al alloy論文目次 目 錄
中文摘要---------------------------------------------------i
英文摘要---------------------------------------------------v
誌 謝---------------------------------------------------vii
目 錄--------------------------------------------------viii
表目錄---------------------------------------------------xiv
圖目錄--------------------------------------------------xvii
第一章 前言------------------------------------------------1
1.1 研究背景-----------------------------------------------1
1.2 本文研究目的及範疇-------------------------------------4
第二章 理論背景與文獻回顧----------------------------------9
2.1 Sc對鋁合金影響之文獻回顧-------------------------------9
2.2 鋁合金之晶粒細化--------------------------------------12
2.3 材料超塑性------------------------------------------- 14
2.3.1超塑性的分類 -------------------------------- 16
2.3.1.1 細晶超塑性 -----------------------------16
2.3.1.2 環境超塑性------------------------------ 17
2.3.2超塑性成形理論基礎-----------------------------18
2.3.2.1 超塑性力學基本原理----------------------18
2.3.2.2 m值與伸長率之關係------------------- 20
2.4 等通道彎角擠製-------------------------------------- 21
2.4.1 ECAE塑性變形原理-----------------------------------22
2.4.2 擠製參數與剪應變幾何特性---------------------------27
2.4.2.1 擠製方位-------------------------------28
2.4.2.2 擠製道次-----------------------------29
2.4.2.3 擠製溫度------------------------------31
2.4.2.4 擠製速度------------------------------33
2.4.3 ECAE製程對鋁鎂合金晶粒尺寸與
機械性質之影響----------------------------35
2.4.3.1 晶粒尺寸影響--------------------------36
2.4.3.2 常溫機械性質之影響--------------------42
2.4.3.3 超塑性之影響--------------------------44
2.4.3.4 第三元素添加之影響--------------------------------46
第三章 鈧添加對高強度Al-Zn-Mg合金之晶粒細化
及機械性質之影響------------------------------------------65
3.1 研究動機----------------------------------------------65
3.2 簡介--------------------------------------------------66
3.2.1 7000 系鋁合金的特性簡介-----------------------------66
3.2.2 7000 系Al-Zn-Mg合金之析出強化機制-------------------70
3.2.3 鋁合金析出硬化機構--------------------- 73
3.3 實驗方法----------------------------------- 77
3.3.1 實驗材料-------------------------------- 78
3.3.2 實驗設備----------------------------------78
3.4 實驗步驟--------------------------------------80
3.4.1 鑄錠材擠製--------------------------------- 80
3.4.2 鈑材冷輥軋實驗--------------------------------------80
3.5 結果與討論----------------------------------------88
3.5.1 添加Sc 對7000系鋁合金顯微結構金相之影響---88
3.5.2 輥軋(Rolling)對於7000系含鈧鋁合金的影響-------------89
3.5.2.1 鈑材輥軋後顯微結構觀察----------------89
3.5.2.2 鈑材輥軋後機械性質測試----------------------------91
3.5.2.2.1 硬度試驗--------------------------91
3.5.2.2.2常溫拉伸試驗-----------------------92
3.5.2.2.3人工時效拉伸試驗 ------------------------------- 93
3.5.2.2.4 高溫拉伸試驗----------------------------------- 94
3.6結論------------------------------------------107
第四章 應用等通道彎角擠製研究5083鋁合金之細晶超塑性----- 108
4.1 研究動機---------------------------------------------108
4.2 簡介-------------------------------------------------109
4.2.1 5083 鋁合金的特性簡介------------------------------109
4.2.2 鋁鎂合金之細晶超塑性-------------------------------112
4.2.3 大量塑性變形法簡介---------------------------------115
4.3 實驗方法與步驟---------------------------------------118
4.3.1實驗材料--------------------------------------------118
4.3.2 模具設計及擠製設備---------------------------------119
4.3.3 實驗步驟-------------------------------------------120
4.3.4 機械性質測試---------------------------------------121
4.3.4.1 微硬度試驗---------------------------------------121
4.3.4.2 常溫拉伸性質測試---------------------------------121
4.3.4.3 高溫拉伸性質測試---------------------------------122
4.3.5 微結構觀察-----------------------------------------123
4.4 結果與討論-------------------------------------------133
4.4.1 ECAE 製程實驗--------------------------------------133
4.4.1.1 擠製溫度的選定-----------------------------------134
4.4.1.2 擠製後的試棒外觀---------------------------------135
4.4.1.3 常溫機械性質-------------------------------------135
4.4.1.4 微結構觀察---------------------------------------139
4.4.2 高溫拉伸實驗---------------------------------------143
4.4.2.1 原始材(as-extruded)試片與90°-200℃-Bc8 試片之比較- -----------------------------143
4.4.2.2 溫度及應變速率對90°-200℃-Bc8 試片之影響---------146
4.4.2.3 不同ECAE 製程試片之比較--------------------------147
4.4.2.4 高溫拉伸前之微結構變化---------------------------149
4.4.3 材料厚度與加工條件之影響---------------------------153
4.4.3.1 微結構觀察分析-----------------------------------153
4.4.3.2 高溫拉伸試驗-------------------------------------155
4.4.3.3 第二相顆粒對超塑性的影響-------------------------156
4.5 結論-------------------------------------------------159
第五章 超塑性5083鋁合金在平面應變狀態下之
超塑性成形特性研究------------------------- -------198
5.1 研究動機---------------------------------------------198
5.2 簡介-------------------------------------------------200
5.2.1 金屬超塑成型方法-----------------------------------201
5.2.2 摩擦對超塑性成型製程的影響-------------------------203
5.2.3 超塑性成型的厚度分佈-------------------------------205
5.2.4 超塑性變形空孔形成理論-----------------------------206
5.2.5 晶粒尺寸與空孔的關係-------------------------------212
5.3 實驗方法與步驟---------------------------------------220
5.3.1實驗材料--------------------------------------------220
5.3.2 模具設計及材料-------------------------------------221
5.3.3 成型測試板片表面圖案蝕刻---------------------------221
5.3.4 吹氣成型系統之配置---------------------------------222
5.3.5 實驗步驟-------------------------------------------223
5.4 結果與討論-------------------------------------------229
5.4.1成型過程金屬流之分析--------------------------------230
5.4.2 成形壓力的控制方法---------------------------------231
5.4.3 潤滑劑對超塑性快速成型的影響-----------------------233
5.4.4 成型過程中試片厚度變化之探討-----------------------236
5.4.5 成形參數對空孔的影響-------------------------------240
5.4.6 背壓對空孔狀態的影響-------------------------------243
5.4.6.1未具背壓成形過程空孔狀態之分析--------------------245
5.4.6.2 具有背壓成形過程空孔狀態之分析-------------------246
5.4.7 超塑性成型極限-------------------------------------247
5.5 結論-------------------------------------------------250
第六章 總結----------------------------------------------272
第七章 參考文獻------------------------------------------274
表目錄
表2.1 六種ECAE 實驗所旋轉的角度與方位-------------------- 53
表2.2 六種不同ECAE 實驗的剪應變幾何特性------------------ 53
表2.3 文獻上已報導鋁及鋁合金經ECAE 加工所得到微結構------ 54表2.4 文獻上已報導鋁鎂合金經ECAE 加工後的低溫或高溫超塑性- 56
表2.5 面心立方晶系金屬常見的輥軋織構--------------------- 56
表3.1 A1與AA7039之化學成分組成比較------------------------82
表3.2 A2與AA7049之化學成分組成比較------------------------83
表3.3 輥軋實驗參數--------------------------------------- 83
表3.4 Keller’s 腐蝕液配方--------------------------------83
表3.5 A1不同軋延率之洛式硬度測試結果----------------------95
表3.6 A2不同軋延率之洛式硬度測試結果----------------------96
表3.7 A1不同軋延率之抗拉強度------------------------------96
表3.8 A2不同軋延率之抗拉強度------------------------------97
表3.9 合金添加元素對於溶解度的影響----------------------- 97
表4.1 本實驗使用之三種5083 鋁合金之組成----------------- 125
表4.2 兩組模具設計參數及等效應變量 --------------------- 125
表4.3 Poulton’s reagent 腐蝕液配方----------------------125
表4.4 ECAE 實驗參數表------------------------------------163
表4.5 5083 鋁合金經過Φ=120°模具擠製後之常溫機械性質----164
表4.6 5083 鋁合金經過Φ=90°模具擠製後之常溫機械性質-----165
表4.7 5083 鋁合金經過Φ=120°T=300℃不同擠製方位之
常溫機械性質---------------------------------------------166
表4.8 5083 鋁合金經90°-200℃-C4 擠製後不同退火溫度下之
硬度值---------------------------------------------------166
表4.9 不同擠製方位---------------------------------------167
表4.10 As-extruded 試片與90°-200℃-Bc8 試片的高溫
拉伸性質比較---------------------------------------------168
表4.11 90°-200℃-Bc8 試片與90°-200℃-C8 試片之高溫
拉伸性質比較---------------------------------------------169
表4.12 90°-200℃-Bc8、120°-200℃-Bc8、120°-200℃-C8
及120°-200℃A8 試片高溫拉伸性質比較----------------------170
表4.13 不同ECAE 製程試片升溫至550℃,持溫15 分鐘於Y 平面之
平均晶粒-------------------------------------------------170
表4.14 AA5083 鈑片與第二批90°-200℃-Bc8 試片的高溫
拉伸性質比較---------------------------------------------171
表4.15 5083 鋁合金中Fe 含量對高溫超塑性的影響------------172
表5.1 SP-5083 鋁鎂合金化學成分表-------------------------225
表5.2 SP-5083 鋁鎂合金材料性質表-------------------------225
表5.3 Poulton’s reagent 之配方表------------------------225
表5.4 Graf Sergeant reagent之配方表----------------------225
表5.5 SKD61 模具鋼化學成分表-----------------------------226
表5.6 SKD61 模具鋼用途及物理特性-------------------------226
表5.7 不同的潤滑劑塗佈方式-------------------------------252
表5.8 不同的潤滑劑塗佈方式對鈑片成形結果的影響 ------- -252
表5.9空孔率(a) 450℃(b) 500℃ ---------------------------253
圖目錄
圖1.1 鋁擠型於車體結構之應用例-----------------------------7
圖1.2 波音777 飛機結構所選用之材料分布---------------------7
圖1.3 Audi A8 全鋁製車體結構-------------------------------8
圖1.4 兩種全鋁車車體結構-----------------------------------8
圖2.1 Al-Sc 部分二元相圖----------------------------------57
圖2.2 Al3Zr的結構示意圖-----------------------------------57
圖2.3 Al-(Mn 、Zr、Cr、Sc)再結晶溫度比較圖----------------58
圖2.4 ECAE 之工作原理-------------------------------------58
圖2.5 無導角之 ECAE 製程剪應變示意圖--------------------- 59
圖2.6 不同的通道夾角Φ及外側圓角Ψ組合所對應的等效應變--- 59
圖2.7 各種擠製方位示意圖--------------------------------- 60
圖2.8 一次擠製的正方元素剪應變圖形與X、Y、Z的定義---------60
圖2.9 不同擠製方位下之剪切模式--------------------------- 61
圖2.10 不同通道夾角Φ之模具設計-------------------------- 61
圖2.11 純鋁在不同擠製溫度下之微結構及SAED ----------------62
圖2.12 幾何動態再結晶的示意圖---------------------------- 63
圖2.13 多邊形化過程中刃差排的重排------------------------ 63
圖2.14 單軸向拉伸圖-------------------------------------- 64
圖3.1 航空用鋁合金應用概況------------------------------- 68
圖3.2 7000系鋁合金熱處理條件與降伏強度及耐腐蝕關係--------68
圖3.3 航空用鋁合金高強度及使用現況----------------------- 69
圖3.4 航空用7000系鋁合金抗腐蝕概------------------------- 69
圖3.5 GP zone 所造成基地晶格扭曲之示意圖------------------75
圖3.6 三種不同的熱處理型合金之自然時效曲線--------------- 75
圖3.7 析出相與基地介面關係圖----------------------------- 76
圖3.8 差排剪切滑移通過微細顆粒示意圖--------------------- 76
圖3.9 差排通過含有析出粒子的Orowan機制------------------- 77
圖3.10 實驗流程圖---------------------------------------- 84
圖3.11 Murdock熱壓機--------------------------------------85
圖3.12 DAITO熱軋機----------------------------------------85
圖3.13伺服式微電腦材料試驗機台----------------------------86
圖3.14 JEOL-JSM-5200掃描式電子顯微鏡----------------------86
圖3.15 經20%、40%軋延率輥軋之取樣鈑材-------------------87
圖3.16 拉伸試片尺寸圖-------------------------------------87
圖3.17 鋁擠製材從400~500℃每隔50℃做1、3、5hrs退火參數,得到最細小的晶粒組織圖--------------------------------------- 98
圖3.18 鋁鑄錠經均質化500℃x12hr後經擠製加工(擠製溫度500℃)再經退火以及冷滾軋後退火處理之微結構金相組織圖------------- 99
圖3.19 鈑材(As-Extruded)經不同軋延率輥軋後金相圖-------- 100
圖3.20 鈑材(As-Extruded)經輥軋後SEM顯微結構圖----------- 101
圖3.21 A1不同軋延率之洛式硬度測試結果------------------- 101
圖3.22 A2不同軋延率之洛式硬度測試結果--------------------102
圖3.23 A1不同軋延率之常溫拉伸測試結果--------------------102
圖3.24 A2不同軋延率之常溫拉伸測試結果-------------------103
圖3.25 鋁合金中添加Sc對於材料降伏強度的影響--------------103
圖3.26 人工時效作業程序----------------------------------104
圖3.27 人工時效曲線--------------------------------------104
圖3.28 為A1擠製材經不同拉伸速率之高溫拉伸試片外觀分析----105
圖3.29 為A2擠製材經不同拉伸速率之高溫拉伸試片外觀分析----106
圖4.1 鋁-鎂合金之相圖------------------------------------112
圖4.2 擠製試棒外觀---------------------------------------126
圖4.3 第一批(A)5083 鋁合金擠型材之初始微結構金相圖-------126
圖4.4 ECAE 模具及試棒方位與擠製示意圖--------------------127
圖4.5 第二批(B)5083鋁合金輥軋厚板材初始微結構之金相圖----127
圖4.6 第三批(C)5083鋁合金輥軋2mm板材初始微結構之金相圖---129
圖4.7 ECAE 模具組合圖------------------------------------130
圖4.8 5083 鋁合金常溫拉伸試片之規格與實際外觀------------131
圖4.9 5083 鋁合金高溫拉伸試片之規格----------------------132
圖4.10 鋁合金之粉末繞射圖譜------------------------------132
圖4.11 5083 鋁合金試棒經Φ=120°的模具擠製1 個道次之破壞外觀
,擠製溫度(a)室溫(b)100℃(c)150℃------------------173
圖4.12 5083 鋁合金經Φ=120° T=300℃在不同擠製方位下之試棒
外觀-----------------------------------------------------173
圖4.13 5083 鋁合金在不同擠製溫度下(Φ=120° Route C)各擠製道次之降伏強度-------------------------------------------174
圖4.14 5083 鋁合金在不同擠製溫度(Φ=90°、Route C)下,各擠製道次之降伏強度-----------------------------------------174
圖4.15 5083 鋁合金在不同擠製溫度(Φ=120°、Route C)下,各擠製道次之硬度值-----------------------------------------175
圖4.16 5083 鋁合金在不同擠製溫度(Φ=90°、Route C)下,各擠製道次之硬度值-------------------------------------------175
圖4.17 5083 鋁合金在不同擠製溫度(Φ=120°、Route C)下,各擠製道次之伸長量-----------------------------------------176
圖4.18 5083 鋁合金在不同擠製溫度(Φ=90°、Route C)下,各擠製道次之伸長量-------------------------------------------177
圖4.19 5083 鋁合金在不同擠製溫度(Φ=120°、Route C)下,各擠製道次之抗拉強度---------------------------------------177
圖4.20 5083 鋁合金在不同擠製溫度(Φ=90°、Route C)下,各擠製道次之抗拉強度-----------------------------------------178
圖4.21 比較90°-200℃-C1、C4 試片及原始材之常溫應力應變曲線-----------------------------------------------------------178
圖4.22 比較90°-350℃-C1、C4 試片及原始材之常溫應力應變
曲線----------------------------------------------179
圖4.23 5083 鋁合金以不同擠製方位(Φ=120°、T=300℃)擠製
後之常溫應力應變曲線------------------------------179
圖4.24 5083 鋁合金經120°-200℃~350℃-C4 擠製後,X平面之
金相圖-------------------------------------------180
圖4.25 5083 鋁合金經90°-200℃~350℃-C4 擠製後,X平面之
金相圖-------------------------------------------181
圖4.26 5083 鋁合金經120°-300℃-A4&Bc4 擠製後,X 平面之
金相圖-------------------------------------------181
圖4.27 5083 鋁合金經90°-200℃-C4 擠製後退火30 分鐘,退火溫
度與硬度之關係圖-----------------------------------182
圖4.28 5083 鋁合金經90°-200℃-C4 擠製後,300℃~450℃退火30分 鐘之X平面金相圖----------------------------------182
圖4.29 5083 鋁合金經90°-200℃-C4 擠製及靜態退火30分鐘後,
平均晶粒尺寸與退火溫度之關係--------------------------183
圖4.30 5083 鋁合金經120°-350℃-C8 擠製後,X 平面之
金相圖-------------------------------------------183
圖4.31 不同擠製方位下,每個擠製道次之剪切平面示意圖-----184
圖4.32 90°-200℃-Bc8 試片在1×10-3 s-1 的應變速率下,在拉伸溫 度250℃時可得到最大伸長量280%--------------------184
圖4.33 250℃、1×10-3 s-1 的條件下,比較as-extruded試片與
9 0°-200℃-Bc8 試片之應力應變曲線--------------------186
圖4.34 90°-200℃-Bc8 試片在1×10-3 s-1 固定初始應變速率下,伸 長量與拉伸溫度之關係-----------------------------187
圖4.35 90°-200℃-Bc8 試片在1×10-3 s-1 固定初始應變速率下,抗 拉強度與拉伸溫度之關係---------------------------187
圖4.36 90°-200℃-Bc8 試片在1×10-3 s-1 固定初始應變速率下,不 同拉伸溫度之應力應變曲線-------------------------187
圖4.37 90°-200℃-Bc8 試片在1×10-3 s-1 固定初始應變速率下,於
250℃、450℃及550℃下,伸長量與初始應變速率之關係--------188
圖4.38 90°-200℃-Bc8 試片在1×10-3 s-1 固定初始應變速率下,於
250℃、450℃及550℃下,流變應力與初始應變速率之關係
-----------------------------------------------188
圖4.39 90°-200℃-C8 試片在1×10-3 s-1 的應變速率下,拉伸溫度550℃可得到最佳伸長量208%-------------------------------189
圖4.40 120°-200℃-Bc8 試片在1×10-3 s-1 的應變速率下,拉伸溫度550℃可得到最佳伸長量275%------------------------------189
圖4.41 90°-200℃-A8 試片在1×10-3 s-1 的應變速率下,拉伸溫度
550℃可得到最佳伸長量250%--------------------------------189
圖4.42 250℃、1×10-3 s-1 的條件下,比較不同ECAE 製程參數試片之應力應變曲線-------------------------------------------190
圖4.43 ECAE processed A alloy (90°-200℃-Bc8) 試片TEM照片顯示sub-grain size 小於1um---------------------------------190
圖4.44 ECAE processed A alloy (120°-200℃-A8) 試片TEM照片顯示 elongated grains .------------------------------------191
圖4.45 5083 鋁合金經不同ECAE 製程之DSC 曲線-------------191
圖4.46 ECAE processed A alloy (90°-200℃-Bc8)試片升溫至550℃,持溫15 分鐘之金相圖顯示 grain size ~8.2um.-------192
圖4.47 90°-200℃-C8 試片升溫至550℃,持溫15 分鐘之金相圖
--------------------------------------------------------192
圖4.48 120°-200℃-Bc8 試片升溫至550℃,持溫15 分鐘之金相圖----------------------------------------------------------193
圖4.49 120°-200℃-C8 試片升溫至550℃,持溫15 分鐘之金相圖-----------------------------------------------------------193
圖4.50 120°-200℃-A8 試片升溫至550℃,持溫15 分鐘之金相圖-----------------------------------------------------------194
圖4.51 ECAE processed (90°-200℃-Bc8) A alloys 試片之TEM照片顯示second phase particles.--------------------------194
圖4.52 第一批5083 鋁合金之SEM 二次電子像(a) 1500倍(b) 1000倍-----------------------------------------------------195
圖4.53第一批5083 A alloys 試片之SEM 照片顯示合金內部有particles存在,經EPMA成份掃描分析顯示為Mn, Fe, Mg 和Si.之化合物---------------------------------------------------195
圖4.54第三批AA5083 超塑性鈑片C之金相圖------------------196
圖4.55 AA 5083 超塑性鈑材在1×10-3 s-1 的應變速率下,拉伸溫度500℃可得到最佳伸長量380%-------------------------------196
圖4.56 第二批5083 B alloys 90°-200℃-C8 試片在1×10-3 s-1的應變速率下,拉伸溫度500℃可得到最佳伸長量358%-------------196
圖4.57 第二批5083 B alloys 90°-200℃-C8 試片在1×10-3 s-1的應變速率下,各溫度之應力應變曲線---------------------------197
圖4.58 第二批5083 B alloys 90°-200℃-C8 拉伸試片外觀顯示在1×10-3 s-1 的應變速率下,有較佳伸長率---------------------197
圖5.1複雜形狀之零件可以用相當簡單的方式成形--------------215
圖5.2 真空成型法:凸模法和凹模法-------------------------215
圖5.3 擴散接合製作三層板工件示意圖-----------------------216
圖5.4 超塑性成形吹氣成形製程示意圖-----------------------216
圖5.5 超塑性母模成形過程之應力狀態示意圖-----------------217
圖5.6 半球體自由成形之應力分佈狀態-----------------------217
圖5.7 晶界滑移造成空孔形成之示意圖-----------------------218
圖5.8 背壓方式之超塑性成型-------------------------------218
圖5.9 隔板成形法示意圖-----------------------------------219
圖5.10 吹氣快速成型杯狀模具示意圖------------------------226
圖5.11 成形實驗、模具及鈑片放置方式示意圖----------------227
圖5.12 吹氣系統之配置圖----------------------------------228
圖5.13 杯狀試件不同階段板片之變形狀態圖------------------254
圖5.14 階梯式加壓程序示意圖------------------------------255
圖5.15 500℃各階段之成形外觀圖---------------------------256
圖5.16 鈑片潤滑劑塗佈區域圖------------------------------256
圖5.17 杯狀盒子成形後上表面蝕刻網格變化------------------257
圖5.18 杯狀盒子成形後下表面蝕刻網格變化-----------------257
圖5.19 不同成型應變速率下(a)0.001 /sec. (b) 0.0002 /sec.未使用潤滑劑,成型過程中不同階段、試片上各點隨時間改變之位移路徑-------------------------------------------------------258
圖5.20 不同成型應變速率下(a)0.001 /sec. (b) 0.0002 /sec.,模具有使用潤滑劑,成型過程中不同階段、試片上各點隨時間改變之位移路徑---------------------------------------------------259
圖5.21 (a)0.001 /sec、(a)0.0002 /sec 應變速率下,自由成形階段,長軸中心點位置沿短軸截面平均應變速率之分佈圖---------260
圖5.22自由成形階段,成品的表面長度位置與其相對應之厚度
所繪製出的曲線圖----------------------------------------261
圖5.23 完全成型階段,成品的表面長度位置與其相對應之厚度所
繪製出的曲線圖-------------------------------------------261
圖5.24完全成形階段距離–應變速率關係圖------------------262
圖5.25 500℃完全成形與觸底時之距離–空孔率關係----------263
圖5.26 不同應變速率下,完全變形過程中,成形試件中央點位置空孔面積百分比與厚度變化之關係圖---------------------------264
圖5.27 不同應變速率下,最後變形過程中,成形試件中央點位置空孔面積百分比與等效應變量之關係圖-------------------------265
圖5.28 不同應變速率下,圓柱杯狀成形試件中央點位置,空孔面積
百分比與潤滑劑之影響關係圖------------------------------266
圖5.29 半球狀零件不同成形條件下,完全成形的空孔狀態沿中心線的分佈圖(a)未具背壓加壓程序(b) 具背壓加壓程序-----------267
圖5.30 柱狀杯形零件不同成形條件下,完全成形的空孔狀態沿中心線的分佈圖(a)未具背壓加壓程序(b) 具背壓加壓程序---------268
圖5.31 所示為未具背壓成形過程中,試片底部中心點位置的空孔量對有效應變之關係圖--------------------------------------269
圖5.32 所示為未具背壓的成形過程中試片底部中心點位置的總空孔密度對有效應變之關係圖----------------------------------269
圖5.33 示為具有背壓的成形過程中,試片底部中心點位置的空孔量對有效應變之關係圖--------------------------------------270
圖5.34 示為具有背壓之反加壓程序變形過程中,試片底部中心點位置的總空孔密度對有效應變之關係圖------------------------270
圖5.35 應變速率10-3 /sec 時,不同空孔百分率對應變之關係圖-----------------------------------------------------------271
參考文獻 Reference
1. Hatch, J. E., Ed., “Aluminum properties and physical metallurgy”,American Society for Materials, Materials Park, Ohio, 1984.
2. http://www.audi.cz/technika/tec_alu.php
3.Toshiji Mukai, Masataka kawazoe, and Kenji Higashi “ Dynamic mechanical properties of a near-nano aluminum alloy processed by Equal-Cannel-Angular-Extrusion”
4. 劉文海,”鋁合金車體與底盤之發展動向” ,機械工業雜誌, 2006年6月, pp.75-84.
5. Yu. A. Filatov, V.I. Yelagin, V.V. Zakharov, “New Al-Mg-Sc alloys” Materials Science and Engineering, A280( 2000) pp.97-101.
6. Davydov V. G., Rostova T. D., Zakharov V.V., Filatov Yu. A., Yelagin V. I.: Scientific principles of making an alloying addition of scandium to aluminium alloys, Materials Science and Engineering A280(2000) pp.30–36.
7. Vladivoj Ocenasek, Margarita Slamova “Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys”, Materials Characterization, vol 47 ,2001, pp. 157-162.
8. Lawrence S. Kramer, William T. Tack, “Scandium in Aluminum Alloys”, Advanced Materials & Processes, 10 (1997)pp.23-24.
9. I. J. Polmear, “Light Alloys-Metallurgy of the Light Metals 2nd ed.”,Edward Arnold, London, England, 1989, pp.18-62.
10. “Aluminum metals handbook”, Ninth Edition, American Society for Metals, vol.2, 1980, pp.28-43.
11. G. W. Lorimer and R. B. Nicholson, “Further Results on the Nucleation of Precipitates in the Al-Zn-Mg system”, Acta Metallurgica, vol.14, 1966, pp.1009-1013.
12. P. N. T. Unwin, and R. B. Nicholson, “The Nucleation and Initial Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg and Al-Mg Alloys”, Acta Metallurgica, vol.17, 1969, pp.1379-1393.
13. C. J. Peel, B. Evans, C. A. Baker, D. A. Bennett, and P. J. Gregson, “The development and application of improved aluminum-lithium alloys”, Proceeding of the second International Aluminum-Lithium Conference, The Metallurgy Society of AIME, California USA, April, 1983, pp.363-392.
14. R.A.Flinn, P.K.Trojan, “Engineering Materials and Their Application”, Houghton Miffin Co., Boston, 1981.
15. C. E. Deiter, “Mechanical metallurgy”, 3rd ed., McGraw-Hill, 1986, pp.221-227.
16. Thomas H. Courtney, “Mechanical Behavior of Materials”, Second Edition, McGraw-Hill Higher Education, 2000, pp.196-210.
17. L. K. Lamikov and G. V. Samsonov, “Soviet non-ferrous metals res.”, USSR, 1964, pp.9-79.
18. E. A. Marquis and D. N. Seidman, “Nanoscale structure evolution of Al3Sc precipitation in Al(Sc) alloys”, Acta Mater., vol.49, 2001, pp.1909-1919.
19. A. F. Noraman, P. B. Prangnell and R. S. McEwen, “The solidification behavior of dilute aluminum-scandium alloys.”, Acta mater., vol.46, 1998, p.5715-5732.
20. K. Venkateswarlu, L. C. Pathak, A. K. Ray, Goutam Das, P. K. Verma, M. umar and R. N. Ghosh, “Microstructure, tensile strength and wear behaviour of Al-Sc alloy”, Material Science & Engineering, A383, 2004, pp.374-380.
21. D. N. Seilman, E. A. Marquis, and D. C. Dunand, “Precipitation strengthening at ambient and elevated temperature of heat-treatable Al(Sc) alloys”, Acta Materialia, vol.50, 2002, pp.4021-4035.
22. T. G. Nieh, R. Kaibyshev, L. M. Hsiung, N. Nguyen, and J. Wadsworth, “Subgrain formation and evolution during the deformation of an Al-Mg-Sc alloy at elevated temperatures”, Acta Metallurgica, vol.36, 1996, pp.1011-1016.
23. Kyung-Tae Park, Duck-Young Hwang, Young-Kook Lee, Young-Kuk Kim, and Dong Hyuk Shin, “High strain rate superplasticity of submicrometer Grained 5083 Al alloy containing scandium fabricated by severe plastic deformation”, Material Science & Engineering, A341, 2003, pp.273-281.
24. F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, “High strain rate superplasticity in a commercial Al-Mg-Sc alloy”, Scripta Materialia, vol.50, 2004, pp.511-516.
25. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T. G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys”, Acta Materialia, vol.50, 2002, pp.553-564.
26. Zhimin Yin, Qinglin Pan, Yonghong Zhang, and Feng Jiang, “Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Mg based alloys”, Material Science & Engineering, A280, 2000, pp.151-155.
27. M. A. Munoz-Morris, C. Garcia Oca, G. Gonzalez-Doncel, and D. G. Morris, “Mircostructural evolution of dilute Al-Mg alloys during processing by equal channel angular pressing and during subsequent annealing”, Material Science & Engineering, vol.375-377, 2004, pp.853-856.
28. Vladivoj Ocenasek, and Margarita Slamova, “Resistence to recrystallization due to Sc and Zr addition to Al-Mg alloys”, Materials Characterization, vol.47, 2001,pp.157-162.
29. Emmanuelle. A. Marquis, and David. N. Seidman, “Microstructure evolution of Al3Sc precipitates by three-dimensional atom-probe microscopy”, Materials science and engineering department, Northwestern University, Evanston, IL, pp.60208-3108, USA.
30. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy and V. I. Kopylov, “Russian Metallurgy”, Engl. Transl., vol.1, 1981, pp.115.
31. J. Richert, and M. Richert, “Aluminum”, vol.62, 1986, pp.604.
32. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, “Scripta Materialia”, vol.36, 1997, pp.681-686.
33. M. Mabuchi, K. Ameyama, H. Iwasaki and K. Higashi, “Acta Materialia”, vol.47, 1999, pp.2047-2057.
34. W. H. Haung, L. Chang, P. W. Kao and C. P. Chang, “Materials Science and Engineering”, A307, 2001, pp.113-118.
35. V. M. Segal, “USSR Patent”, No.575892, 1977.
36. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “Scripta Materialia”, vol.35, 1996, pp.143-146.
37. Y. L. Bai and B. Dodd: Adiabatic Shear Localization Occurrence,
Theories and Applications, Pergamon Press, N. Y. , 1992.
38. M. A. Meyers, V. F. Nesterenko, J. C. LaSalvia and Q. Xue, “Shear
Localization in Dynamic Deformation of Materials: Microstructural
evolution and self-organization,” Mater. Sci. Eng. A317, 2001,
pp. 204-225.
39. H. S. Kim, “Materials Science and Engineering”, A315, 2001, pp.122-128.
40. M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, “The Minerals, Metals & Materials Society”, Warrendale, PA, 2000, pp.125.
41. Furukawa M., Horita Z., Langdon T. G., ”Factors influencing the shearingpatterns in Equal-Channel Angular Pressing”, Materials Science andEngineering A, 332,97-109(2002).
42. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V., ”Bulk nanostructed
materials from severe plastic deformation”, Progress in Materials
science, 45, 108-112(2000).
43. K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto, and T. G. Langdon,
“Metall.Trans.”, A29, 1998, pp.2245.
44. Reger Pearce : ” Superplasticity an overview ” , p1-1-1-13.
45. 葉均蔚, “鎂及鋁合金之超塑性成形”,工業材料雜誌, 174 期, 90 年 6 月, pp.102-112.
46. R. Verma, P. A. Friedman, A. K. Ghosh, C. Kim, and S. Km, “Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet”, Metallurgical and Materials Transactions, 1996, pp.1889.
47. R. Verma, P. A. Friedman, A. K. Ghosh, C. Kim, and S. Kim, “Superplastic forming characteristics of fine-grained aluminum”, J. Mater. Sci. Eng, 1995, pp.543.
48. “Applications of Scandium In Al-Sc Alloys”, http://www.scandium.org/Sc-Al.html.
49. M. Hatherly and W. B. Hutchinson, in An Introduction to Textures in Metals, Institution of Metallurgist, (1979) p. 2.
50. M. Hatherly and W. B. Hutchinson, in An Introduction to Textures in Metals, Institution of Metallurgist, (1979) p. 39.
51. T. Wantanabe, S. Kimura, and S. Karashima, Phil. Mag., A49, (1984) p. 845.
52. Toshiji Mukai, Masataka kawazoe, and Kenji Higashi “ Dynamic
mechanical properties of a near-nano aluminum alloy processed by
Equal-Cannel-Angular-Extrusion”
53. Auto & Light Truck Group (ALTG) .
54. 蔡幸甫,輕金屬產業的發展趨勢,工業材料,166 期,89年10月,pp. 165~168。
55. 蘇聖紋,國立中山大學材料科學研究所碩士論文(1999)。
56. A.K. Vasudevan and R.D. doherty,” Aluminum alloys-contemporary research and applications”, Vol. 31 (1989), pp. 85~94.
57. Y.U. Zhu, T.C. Lowe and T.G. Langdon,”Performance and application of nanostructured materials produced by severe plastic deformation”, Scripta Materialia 51 (2004), pp. 825~830.
58. V.L. Tellkamp and E.J. Lavernia,” Process and Mechanical Properties of Nanocrystalline 5083 Al Alloy”, NanoStructured Materials, Vol. 12 (1999), pp. 249~252.
59. Y. Wu, L.Del Castillo, E.J. Lavernia,” Superplasticity of 5083 alloys produced by spray deposition”, Scripta Materials, Vol. 34, No. 8 (1996), pp.1243 ~1249.
60. K. Zhang, I.V. Alexandrov and K. Lu,” The X-ray study on a nanocrystalline Cu processed by Equal-Channel Angular Extrusion”, Nanostructured Materials, Vol. 9 (1997), pp. 347~350.
61. W.Blum, Q. Zhu, R. Merkel, H.J. McQueen,” Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn”, Materials science & engineering, A205 (1996), pp. 23 ~30.
62. R. Verma, A.K. Ghosh, S. Kim, C. Kim,” Grain refinement and superplasticity in 5083 Al”, Materials Science & Engineering A 191 (1995), pp.143 ~150.
63. R.M. Cleveland, A.K. Ghosh, J.R. Bradley,” Comparison of superplastic behavior in two 5083 Al alloys”, Materials Science & Engineering A 351 (2003), pp. 228 ~236.
64. V. M. Segal, Invention Sertificate of the USSR Patent No. 575892 (1977).
65. V. M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov, Russian Metallurgy, Engl. Transl., Vol. 1 (1981), p 115.
66. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon,” Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials”, Acta Materialia, Vol. 35, No. 4 (1996), pp.143~146.
67. K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon,” Influence of channel angle on the development of ultrafine grains in equal-channel angular extrusion”, Acta Materialia, Vol. 46, No. 5 (1998), pp. 1589~1599.
68. Raghavan Srinivasan, “ Computer simulation of the equal channel angular extrusion process”, Scripta Materialia 44 (2001), pp. 91~96
69. 陳立文,等通道彎角擠製之有限元素分析,中央大學碩士論文(2002)。
70. Y. Wu and I. Baker,” An experimental study of Equal Channel Angular Extrusion”, Scripta Materialia, Vol. 37, No. 4 (1997), pp. 437~442.
71. A. Shan; I.G. Moon, H.S. Ko, J.W. Park,” Direct observation of shear deformation during equal channel angular pressing of pure aluminum”, Scripta Materialia, Vol. 41 (1999), pp.353~357.
72. H. S. Kim, M. H. Seo and S. I. Hong,” Plastic deformation analysis of matels during equal channel angular pressing“, Journal of Materials Processing Technology, 113 (2001), pp. 622~626.
73. Y.L. Yang and Shyong Lee,” Finite element analysis of strain conditions after equal channel angular extrusion”, Journal of Materials Processing Technology, 140 (2003), pp. 583~587.
74. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon,” An investigation of microstructural evolution during equal-channel angular pressing”, Acta Materialia, Vol. 45 (1997), pp. 4733~4741.
75. V.M. Segal,” Materials processing by simple shear”, Materials science & engineering A197 (1995), pp. 157~164.
76. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langod,“ The process of grain refinement in equal-channel angular pressing”, Acta Materialia, Vol. 46 (1998), pp. 3317~3331.
77. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon,” The shearing characteristics associated with equal-channel angular pressing”, Materials Science and Engineering A257 (1998), pp. 328~332.
78. Z. Horita, M. Furukawa, K. Ohisif, M. Nemoto and T. G. Langdon,”
Equal-channel angular pressing for grain refinement of metallic materials”, The Japan Institute of Metals (1999), pp. 301~308.
79. H.J. Cui, R.E. Goforth and K.T. Hartwig,” The three-dimensional simulation of flow pattern in equal-channel angular extrusion”, The member journal of the minerals, metals & materials society, Vol. 50, No. 8 (1998).
80. 孫佩玲,純鋁經大量塑性變形生成細晶粒之研究,中山大學碩士論文(1998)。
81. 王郁雲,變形溫度對等徑轉角擠製純鋁微組織之影響,中山大學碩士論文(2002)。
82. A. Yamashita, D. Yamaguchi, Z. Horita and T. G. Langdon, “ Influence of pressing temperature on microstructural development in equal-channel angular pressing”, Materials Science and Engineering A287 (2000), pp. 100~106.
83. P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. K. Tsenev and T. G. Langdon,” Influence of pressing speed on microstructural development in equal-channel angular pressing”, Metallurgical and Materials Transactions A, Vol. 30A (1998), pp. 1989~1998.
84. M. Kamachi, M. Furukawa, Z. Horita, T.G. Langdon,” A model investigation of the shearing characteristics in equal-channel angular pressing”, Materials Science and Engineering A347 (2003), pp. 223~230.
85. J.R. Bowen, A. Gholinia, S.M. Roberts, P.B. Prangnell,” Analysis of he billet deformation behaviour in equal channel angular extrusion”, Materials Science and Engineering A287 (2000), pp. 87~99.
86. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langod,“ Factors influencing the equilibrium grain size in equal-channel angular pressing: role of Mg additions to Aluminum”, Metallurgical and Materials Transactions A, Vol. 29A (1998), p. 2503.
87. J. Wang, M. Furukawa, Z. Horita and M. Nemoto,” Enhanced grain growth in an Al-Mg alloy with ultrafine grain size”, Materials Science and Engineering A216 (1996), pp. 41~46.
88. A. Gholinia, P.B. Prangnell and M.V. Markushev,” The effect of strain path on the development of deformation structure in severely deformation aluminum alloys processed by ECAE”, Acta Meterialia 48 (2000), pp. 1115~1130.
89. 黃盈源,鋁鎂合金等徑轉角擠製組織與擠製溫度關係之研究,中 山大學碩士論文(1998),P6。
90. 陳奕琦,等徑轉角擠製溫度對鋁鎂合金微結構發展的影響,中山大學碩士論文(2001)。
91. Z. Horita, T. Fujinami, M. Nemoto and T.G. Langdon,” Improvement of mechanical properties for Al alloys using equal-channel angular pressing”, Journal of Materials Processing Technology, 117 (2001), pp. 288~292.
92. M. Kawazoe, T. Shibata, T. Mukai and K. Higashi,” Elevated temperature mechanical properties of A 5056 Al-Mg ally processed by equal-channel-angular-extrusion”, Scripta Materialia, Vol. 36, No. 6 (1997), pp. 699~705.
93. M. Mabuchi, H. Iwasaki and K. Higashi,” Microstructure and mechanical properties of 5056 Al alloy processed by equal channel angular extrusion”, NanoStructured Materials, Vol. 8, No. 8 (1997), pp. 1105~1111.
94. M.V. Markushev, C.C. Bampton, M.Yu. Murashkin and D.A. Hardwick,” Structure and properties of ultra-fine grained aluminum alloys produced by severe plastic deformation”, Materials Science and Engineering A234-236 (1997), pp. 927~931.
95. M.V. Markushev, M.Yu. Murashkin, P.B. Prangnell, A. Gholinia and O.A. Maiorova,” Structure and Mechanical behaviour of an Al-Mg alloy after equal channel extrusion”, NanoStructureed Materials, Vol. 12 (1999), pp. 839~842.
96. T. Mukai, M. Kawazoe and K. Higashi,” Strain-rate dependence of mechanical properties in AA5056 Al-Mg alloy processed by equal -channel-angular-extrusion”, Materials Science and Engineering A247 (1998), pp. 270~274.
97. T. Mukai, M. Kawazoe and K. Higashi,” Dynamic mechanical properties of a near-nano aluminum alloy processed by equal -channel-angular-extrusion”, NanoStructured Materials, Vol. 10,
No. 5 (1998), pp. 755~765.
98. A.K. Ghosh and C.H. Hamilton,” Superplastic forming and diffusion bonding”, Seminar course (1990), p. 5.
99. Roger Pearce,“ Superplasticity- an overview ”, NATO/AGARD Lecture Series on Superplasticity, 09/ 1987, p. 1.
100. S.N. Patankar and T.M. Jen,” Strain Rate Insensitive Plasticity in Aluminum Alloy 5083”, Scripta Mater. 38 (1998), pp. 1255~1261.
101. A.K. Ghosh and C.H. Hamilton,” Superplastic forming and diffusion bonding”, Seminar course (1990), pp. 159~164.
102. A.K. Ghosh and C.H. Hamilton,” Superplastic forming and diffusion bonding”, Seminar course (1990), pp. 60~71.
103. S. Komura, M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon,” Optimizing the procedure of equal-channel angular pressing for maximum superplasticity”, Matterials Science and Engineering A297 (2001), pp. 111~118.
104. Japanese Standards Association,” Glossary of terms used in metallic superplastic materials”, JIS H 7007 No. 1005, p. 1525.
105. H. Akamatsu, T. Fujinami, Z. Horita and T.G. Langdon,” Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP”, Scripta Materialia, 44 (2001), pp. 759~764.
106. H.B. Geng, S.B. Kang and B.K. Min,” Hight temperature tensile behavior of ultra-fine grained Al-3.3Mg-0.2Sc-0.2Zr alloy by equal channel angular pressing”, Matterials Science and Engineering A373 (2004), pp. 229~238.
107. R.K. Islamgaliev, N.F. Yunusova, R.Z. Valiev, N.K. Tsenev, V.N. Perevezentsev and T.G. Langdon,” Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing, Scripta Materialia, 49 (2003), pp. 467~472.
108. K.T. Park, D.Y. Hwang, Y.K. Lee, Y.K. Kim and D.H. Shin,” High strain rate superplasticity of summicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation”, Matterials Science and Engineering A341 (2003), pp. 273~281.
109. Y.N. Wang and J.C. Huang,” Texture analysis in hexagonal materials”, Materials Chemistry and Physics 81 (2003), pp. 11~26.
110. 蕭一清,5083 鋁合金低溫超塑性研發與變形織構分析,國立中山大學博士論文(2000),45~48 頁.
111. A.K. Vasudevan and R.D. Doherty, Aluminum Alloys – Contemporary Research and Application, Vol. 31 (1989), p. 563.
112. H-R Wenk and P Van Houtte,” Texture and anisotropy”, Rep. Prog. Phys. 67 (2004), pp. 1381~1384.
113. 蔡東霖,利用ECAE 及退火處理細化鋁鎂合金晶粒,國立中山大學碩士論文 (2000),27~30 頁.
114. F.J. Humphreys, P.B. Prangnell and R. Priestner,” Fined-grained alloys by thermomechanical processing”, Current Opinion in Solid State & Materials Science 5 (2001), pp. 15~21.
115. A.K. Vasudevan and R.D. Doherty, Aluminum Alloys – Contemporary Research and Application, Vol. 31 (1989), p. 564.
116. http://aluminium.matter.org.uk
117. P.L. Sun, P.W. Kao and C.P. Chang,” Characteristics of submicron grained structure formed in aluminum by equal channel angular extrusion”, Materials Science and Engineering A283 (2000), pp. 82~85.
118. F.J. Humphreys and M Hatherly, Recrystallization and Related Annealing Phenomena, 1st edition (1995), p. 437.
119. F.J. Humphreys and M Hatherly, Recrystallization and Related Annealing Phenomena, 1st edition (1995), p. 46.
120. H-R Wenk and P Van Houtte,” Texture and anisotropy”, Rep. Prog. Phys. 67 (2004), pp. 1385~1389.
121. C. Pithan, T. Hashimoto, M. Kawazoe, J. Nagahora and K. Higashi,”
Microstructure and texture evolution in ECAE processed A5056”, Materials Science and Engineering A280 (2000), pp. 62~68.
122. Y.T. Zhu and Terry C. Towe,” Observation and issues on mechanisms of grain refinement during ECAE process”, Materials Science and Engineering A291 (2000), pp. 46~53.
123. W.H. Huang, L. Chang, P.W. Kao and C.P. Chang,” Effect of die angle on the deformation texture of copper processed by equal channel angular extrusion”, Materials Science and Engineering A307 (2001), pp. 113~118.
124. C.H. Hamilton, “ Superplastic Sheet Forming ”, NATO/AGARD
Lecture Series on Superplasticity, 09/1987, pp2-2∼2-4.
125. J Pilling and N Ridley , Superplasticity in Crystalline Solids , The
Institute of Metals , 1989 , p160 .
126. Zhiping Chen , P.F Thomson , Friction Against Superplastic Aluminum Alloys , Wear 201 , 1996 , p227 .
127. Friction , Lubrication , and Wear Technology , ASM HANDBOOK
Volume 18 , p59∼p60 .
128. J. Pilling and N. Ridley , 3rd. Int. Aluminum-Lithium Conf. Eds. C. Baker , P.J. Gregson , S.J. Harris and C.J. Peel , Institute of Metals , London , 1985 , P184.
129. D.J. Miller and T.G. Langdon , Trans. JIM. Vol.21 , 1980 , P123.
130. A.H. Chokshi , J. Mat. Sci. Lett. Vol.5 , 1986 , P144.
131. C.C. Bampton and J.W. Edington , Metall. Trans. Vol.13A , 1982 , P1721.
132. P.Shariat , R.B. Vastava and T.G. Langdon , Acta Metall. , Vol.30 , 1982 , P258.
133. A.E. Geckinli , Metal Sci. , Vol.17 , 1983 , P12.
134. R.C. Gifkins , Superplastic Forming of Structural Alloys , Eds. N.E. Paton and C.H. Hamilton , TMS-AIME , Warrendale , Pa. , USA , 1982 , P3.
135. J.R. Spingarn and W.D. Nix , Acta Metall. , Vol.26 , 1978 ,
P1389.
136. Jiang Xinggang, Cui Jianzhong and Ma Longxiang, “ An Experimental Study of Cavity Nucleation During Superplastic Deformation ”, Material Research Society, Vol.196, 1990, pp51∼56.
137. A.K. Ghosh and C.H. Hamilton, “ Superplastic Forming and Diffusion Bonding ”, SPF/DB workshop Taipei, Feb. 13 –15,
1990, pp157∼168.
138. A.H. Chokshi and A.K. Mnkherjee, “ Acta Metall ”, Vol. 37, 300T, 1989.
139. R. Raj and M.F. Ashby, Acta Metall., Vol. 23, 1975, p653.
140. J.W. Hancock, Metal Sci.,Vol. 10, 1976, p319.
141.楊錫昌, “ 鋁鎂合金5083 超塑成形研究 ”, 國立中央大學, 機
械工程研究所, 06/1994, p15.
142. C.C. Bampton and R. Raj, Acta Metall. Vol. 30, 1982, p2043.
143. J. Pilling and N. Ridley, Acta Metall., Vol. 34, 1986, p669.
144. J. Pilling, Mat. Sci. and Technol., Vol. 1, 1985, p461.
145. C.C.Bampton, A.K. Ghosh and M.W. Mahoney, Superplasticity
in Aerospace — Aluminum, Eds. R. Pearce and L. Kelly, SIS,
Cranfield, Bedford, England, 1985,p1.
146. J. Pilling, B. Geary and N. Ridley, ICSMA 7, Ed. H.J. McQueen and J.P. Bailon, Publ. Pergamon Prress, Oxford, 1985,P.823.
147. M.A. Clark and T.H. Alden, Acta Metallurgica, Vol.21, 1973, p1195.
148. A.K. Ghosh and C.H. Hamilton, Metallurgical Transactions, Vol. 10A, 1979 ,p699.
149. C.H. Hamilton. B.A. Ash, D. Sherwood, and H.C. Heikkinen,
Superplasticity Aerospace, ed. H.C. Heikkinen and T.R. McNelley, The Metallurgical Society, Inc., Warrendale, Pennsylvania, 1988, P29.
150. D.S. Wilkinson and C.H. Caceres, Journal of Material Science Letters, Vol.3, 1984,p395.
151. M.J. Stowell, Superplastic Forming of Structural Alloys, Eds. N.E. Paton and C.H. Hamilton, TMS-AIME, Warrendale, Pa., USA, 1982, p321.
152. H.Y. Wu, J.T. Chern and S. Lee, Materials Science and Manufacturing, Vol.10 ,1995, P90.
153. J.W. Hancock, Metal Sci., Vol.10.1976, p319.
154. S. J. Hales, T. R. McNelley, and H. J. McQueen, Metall. Trans. A, 22A, (1991) p. 1037.
155. T. R. McNelley, R. Crooks, P. N. Kalu, and S. A. Rogers, Mater. Sci. Eng., A166, (1993) p. 135.
156. E. M. Taleff, G. A. Henshall, T. G. Nieh, D. R. Lesuer, and J. Wadsworth, Metall. Mater. Trans., 29A, (1998) p. 1081.
157. E. M. Taleff, D. R. Lesuer, and J. Wadsworth, Metall. Mater. Trans., 27A, (1996) p. 343.
158. A. A. Tavassoli, S. E. Razavi, and N. M. Fallah, Metall. Trans. A, 6A, (1975) p. 591.
159. J. K. Kim, and D. H. Shin, Scripta Mater., 38, (1998) p. 991.
160. D. Y. Maeng, Master Dissertation, Department of Metallurgy Engineering, Chungnam National University, Taejon, Korea (1997).
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2009-12-18 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare