博碩士論文 963206011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.129.72.151
姓名 黃啟彰(Chi-Chang Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 薄膜組合程序處理淨水場濾池反洗廢水之研究
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以平鎮及板新淨水場快濾池為對象,建立其反洗廢水之水質特性。並以不同操作條件處理濾池反洗廢水,探討超濾(UF)程序之滲透液水質、通量及膜面阻塞的情形。最後,以不同薄膜(微濾MF、超濾UF、奈濾NF及逆滲透RO)組合程序,評估回收處理反洗廢水的可行性。
研究結果顯示,兩淨水場快濾池反洗廢水屬中等濁度(156~390NTU)或懸浮固體物濃度(193.1~380.7mg/L),且99%以上的濁度顆粒,粒徑大於1μm。廢水中的溶解性物質,大部分來自原反洗清水,故有機物濃度低(DOC為2.02~6.66mg/L),且導電度亦不高(216~275μs/cm)。UF程序操作條件中,以1μm MF前處理可去除廢水中大部分濁度顆粒,進而提高UF滲透液通量。在3kg/cm2操作壓力下,可獲得最大的滲透液總通量。根據SEM觀測及模式模擬結果,反洗廢水經UF程序,其UF薄膜阻塞機制偏向於濾餅過濾。
薄膜組合程序中,MF程序可去除反洗廢水中99.87%的濁度;接續的UF程序可使廢水中殘餘的濁度顆粒完全地被去除,且可去除廢水中約30%的DOC;UF程序之後的NF或RO程序,能進一步去除部分DOC及無機離子。反洗廢水經MF過濾後的水質,初步顯示可符合飲用水水質標準,故可考量就近直接回收再利用作為快濾池反洗水。如考量作為清水補充或生活用水,基於用水安全,為避免致病菌穿透MF薄膜及有機物污染的風險,仍須接續UF程序。
摘要(英) This study investigated the characteristics of filter backwash wastewater (FBW) from Pingjan and Bansin water treatment plants (WTP).The effects of ultrafiltration process parameters on the quality and flux of the FBW permeate as well as membrane fouling were discussed. Also, the feasibility of recovery and reuse of the FBW by the combination of various membrane processes including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) or reverse osmosis (RO) was evaluated.
The results of this study revealed that the FBWs from the two WTPs were both characterized as medium level of turbidity (156-390 NTU) and SS (193.1-380.7 mg/L) with 99% particle size larger than 1 μm. The dissolved substances presented in the FBWs were majority from the original backwash water, indicating low dissolved organic carbon (DOC = 2.02-6.66 mg/L) and conductivity (216-275 μs/cm). For UF process, the pretreatment of FBW by 1 μm MF could remove most of turbidity particles and enhance permeate flux of UF. It also found that the maximum total permeate flux occurred at 3 kg/cm2 UF operating pressure. The mechanism of UF membrane fouling was prone to cake filtration according to SEM analysis of membrane surface and blocking model simulation.
The pretreatment of FWB by MF could remove 99.87% of turbidity. After MF process, the residual turbidity particles in FBW were almost completely removed along with about 30% of DOC removal by the following UF process. In comparison, the NF and RO process had ability to further remove DOC and inorganic ions after UF process. The experimental results of membrane filtration showed that the water quality of FBW after MF treatment had potential to meet the drinking water quality standard of Taiwan. Thus, the MF permeate could be directly recycled and reused as the makeup of filter backwash water in WTPs. However, if FBW was reused as a portion of clean water supply, the combination of MF and UF should be considered in order to prevent the penetration of pathogenic bacteria and reduce the risk of organic pollutants for safety use.
關鍵字(中) ★ 反洗廢水
★ 超濾
★ 薄膜組合程序
★ 滲透液通量
關鍵字(英) ★ filter backwash wastewater
★ ultrafiltration
★ combined membrane process
★ permeate flux
論文目次 摘要………………………………………………………………….….Ⅰ
Abstract………………………………………………………………….Ⅱ
致謝……………………………………………………………………..Ⅲ
目錄………………………………………………………………..……Ⅳ
圖目錄…………………………………………………………………..Ⅵ
表目錄…………………………………………………………………..Ⅸ
第一章 前言…………………………………………..…………………1
1.1 研究緣起………………………………………………..……….1
1.2 研究目的及內容………………………………………………...2
第二章 文獻回顧………………………………………………………..3
2.1平鎮及板新淨水場快濾池設計及操作…………………..……..3
2.2 反洗廢水水質特性……………………….……………………..5
2.3 薄膜程序………………………………………………………...7
2.3.1 薄膜種類與形式……………………………………...........7
2.3.2 薄膜原理與機制……………………………………..........11
2.3.3 薄膜模式…………………………………………………..13
2.4 影響薄膜程序操作效率因子……………………...……..……19
2.5 薄膜程序應用的限制………………………..……...…………21
2.6 淨水場應用薄膜程序之研究現況…………………….………21
第三章 實驗材料、設備及研究方法…………………………………24
3.1 研究架構………………………………………………….……24
3.2 實驗材料…………………………………………….…………24
3.3 研究方法與步驟………………………………….……………26
3.4 實驗儀器、設備及藥品………...…………………………..…34
3.5 分析項目及方法…………………...…………………..………36
第四章 結果與討論………………..……………………………..……40
4.1 反洗廢水水質特性………..……………………………..…….40
4.1.1 反洗廢水物化性質及指標性微生物………………..……40
4.1.2 反洗過程的廢水水質變化………………………..……....48
4.2 以簡易沉降及MF處理反洗廢水……..…………………..….50
4.2.1 以簡易沉降及1μm MF處理反洗廢水……….……..…...50
4.2.2 以0.2μm MF程序處理不同濁度反洗廢水…..…..……...52
4.3 UF程序回收處理反洗廢水…………………………….……...57
4.3.1 滲透液水質…………………………..…………………....57
4.3.2 滲透液通量…………………………..…………………....59
4.3.3 滲透液通量模式及膜面阻塞模式……..…………………67
4.3.4 薄膜阻塞與膜面積垢微觀分析………………….……….76
4.4 NF或RO程序回收處理反洗廢水……………………..….….86
4.4.1 滲透液水質…………..…...…...…………………..………86
4.4.2 滲透液通量…………..…...…...……………………..……88
4.5 薄膜程序回收處理反洗廢水之整體評估…………………….88
第五章 結論與建議……………..…...…...………..…………..………92
5.1 結論……………..…...…...…………………...………..………92
5.2 建議……………..…...…...……………………...……..………94
參考文獻……………..…...…...………………………………..………95
附錄1 薄膜程序實驗數據資料………..…………….…...….………101
附錄2 實驗設備照片…..…...…...…………………………..…….…108
參考文獻 1.Akbari, A. S. Desclaux, J. C. Remigy and P. Aptel, “Treatment of textile dye effluents using a new photografted nanofiltration membrane,” Desalination, Vol. 149, pp. 101-107(2002).
2.American Water Works Association(AWWA), Water Quality and Treatment-A Handbook of Community Water Supplies, 5th edition, McGraw-Hill, Inc., USA (1999).
3.Bellona, C., J. E. Drewes, P. Xu and G. Amy, “Factors affecting the rejection of organic solutes during NF/RO treatment - a literature review,” Water Research, Vol. 38, pp. 2795-2809(2004).
4.Bick, A. and G. Oron, “Assessing the linkage between feed water quality and reverse osmosis membrane performance,” Desalination, Vol. 137, pp. 141-148(2001).
5.Bourgeois, J.C., M.E. Walsh, and G.A. Gagnon, “Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios,” Water Research, 38, pp. 1173-1182 (2004).
6.Brügger, A., K. Voßenkaul, T. Melin, R. Rautenbach, B. Golling, U. Jacobs and P. Ohlenforst, “Reuse of filter backwash water by implementing ultrafiltration technology,” Water Science and Technology:Water Supply, Vol. 1, pp. 207-214 (2001).
7.Chang, J. S., L. J. Tsai and S. Vigneswaran, “Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration,” Water Science and Technology, Vol. 34, pp. 133-140(1996).
8.Chang, S., T. A. Waite, A. I. Schäfer and A. G. Fane, “Adsorption of trace steroid estrogens to hydrophobic hollow fiber membranes,” Desalination, Vol. 146, pp. 381-386(2002).
9.Chellam, S., J. G. Jacangelo, T. P. Bonacquisti and B. A. Sc., “Effect of pretreatment on surface water nanofiltration,” American Water Works Association, Vol. 89, pp. 77-89(1997).
10.Cheryan, M., Ultrafiltration and Microfiltration Handbook, Technomic, USA(1998).
11.Dagmar, Š., M. Petr, J. W. Richard and V. Pavlína, “Influence of ionic strength and pH of dispersed systems on microfiltration,” Desalination, Vol.163, pp. 323-332(2004).
12.Elimelech, M., X. Zhu, A. Childress and S. Hing, “Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes,” Journal of Membrane Science, Vol. 127, pp. 101-109(1997).
13.Hermia, J., “Constant pressure blocking filtration laws - application to power-law non-newtonian fluids,” Institution of Chemical Engineers, Vol. 60, pp. 183-187(1982).
14.Hong, S., P. Krishna, C. Hobbs, D. Kim, J. Cho, “Variations in backwash efficiency during colloidal filtration of hollow-fiber microfiltration membranes,” Desalination, Vol.173, pp. 257-268(2005).
15.Howe, K. J. and M. M. Clark, “Fouling of microfiltration and ultrafiltration membranes by natural waters,” Environmental Science & Technology, Vol. 36, pp. 3571-3576(2002).
16.Konieczny, K., “Modelling of membrane filtration of natural water for potable purposes,” Desalination, Vol. 143, pp. 123-139(2002).
17.Lee, N., G. Amy, J. P. Croué and H. Buisson, “Identification and understanding of fouling in low-pressure membrane(MF/UF) filtration by natural organic matter(NOM),” Water Research, Vol. 38, pp. 4511-4523(2004).
18.Lee, Y. and M. M. Clark, “Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions,” Journal of Membrane Science, Vol. 149, pp. 181-202(1998).
19.Lipp, P. and G. Baldauf, “Application of out-in MF/UF-systems for drinking water treatment with air supported backwash-three case studies,” Desalination, 147, pp. 63-68 (2002).
20.Mierzwa, J. C., I. Hespanhol, M. C. C. da Silva, L. D. B. Rodrigues and C. F. Giorgi, “Direct drinking water treatment by spiral-wound ultrafiltration membranes,” Desalination, 230, pp. 41-50(2008).
21.Mohammadi, T., M. Kazemimoghadam and M. Saadabadi, “Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil water emulsions,” Desalination, Vol. 157, pp. 369-375(2003).
22.Mozia, S., M. Tomaszewska and A. W. Morawski, “Studies on the effect of humic acids and phenol on adsorption - ultrafiltration process performance,” Water Research, Vol. 39, pp. 501-509(2005).
23.Munir, C., “Ultrafiltration and microfiltration handbook,” Technomic, Lancaster(1998).
24.MWH, “Water treatment principles and design,” 2nd edition, John Wiley & Sons (2005).
25.Ng, H. Y. and M. Elimelech, “Influence of colloidal on rejection of trace organic contaminants by reverse osmosis,” Journal of Membrane Science, Vol. 244, pp. 215-226(2004).
26.Nyström, M., A. Pihlajamäki, R. Liikanen and M. Mänttäri, “Influence of process conditions and membrane/particle interation in NF of Wastewaters,” Desalination, Vol. 156, pp. 379-387(2003).
27.Paul, D. R., “Reformulation of the solution-diffusion theory of reverse osmosis,” Journal of Membrane Science, Vol. 241, pp. 371-386(2004).
28.Peng, W., I. C. Escobar and D. B. White, “Effects of water chemistries and properties of membrane on the performance and fouling ─ a model development study,” Journal of Membrane Science, Vol. 238, pp. 33-46(2004).
29.Reissmann, F. G. and W. Uhl, “Ultrafiltration for the reuse of spent filter backwash water from drinking water treatment,” Desalination, Vol. 198, pp. 225-235(2006).
30.“Reverse Osmosis and Nanofiltration,” American Water Works Association, Denver(1999).
31.Richard, W. B., “Membrane technology and applications,” John Wiley & Sons, New York(2004).
32.Shengji, X., Y. Juanjuan, and G. Naiyun, “An empirical model for membrane flux prediction in ultrafiltration of surface water,” Desalination, Vol. 221, pp.370-375(2008).
33.Song, H., X. Fan, Y. Zhang, T. Wang, and Y. Feng, “Application of microfilteration for reuse of backwash water in a conventional water treatment plant - a case study,” Water Science and Technology: Water Supply, Vol. 1, pp. 199-206 (2001).
34.Song, L., “Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling,” Journal of Membrane Science, Vol. 139, pp. 182-200(1998).
35.Tansel, B., W. Y. Bao and I. N. Tansel, “Characterization of fouling kinetics in ultrafiltration systems by resistances in series model,” Desalination, Vol. 129, pp. 7-14(2000).
36.Vigneswaran, S., S. Boonthanon, and H. Prasanthi, “Filter backwash water recycling using crossflow microfiltration,” Desalination, 106, pp. 31-38 (1996).
37.Weber, J. W. J. and LeBoeuf E. J., “Processes for advanced treatment of water,” Water Science and Technology, Vol. 40, pp. 11-19(1999).
38.Willemse, R. J. N. and Y. Brekvoort, “Full-scale recycling of backwash water from sand filters using dead-end membrane filtration,” Water Research, Vol. 33, pp. 3379-3385(1999).
39.Yeom, C. K., S. H. Lee and J. M. Lee, “Effect of the ionic characteristics of anionic solutes in reverse osmosis,” Journal of Membrane Science, Vol. 169, pp. 237-247(2000).
40.Yoon, Y., G. Amy, J. Cho and N. Her, “Effects of retained natural organic matter(NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration,” Desalination, Vol. 173, pp. 209-221(2005).
41.平鎮淨水場,「平鎮淨水場期末營運成果報告書」,平鎮淨水場(2008)。
42.朱敬平,「薄膜分離之應用」,財團法人中興工程顧問社環境工程研究中心(2007)。
43.朱敬平、吳政倫、李文善、黃志彬、鍾裕仁,「以薄膜技術回收淨水場快濾池反沖洗水之可行性研究」,中興工程季刊,第99期,pp.19-26 (2008)。
44.李佩玲,「極微薄膜技術處理染料水溶液之研究」,國立台灣科技大學化學工程系碩士論文(2003)。
45.林何印,「超濾與逆滲透薄膜程序處理及回收工業廢水之研究」,國立中央大學環境工程研究所碩士論文(2005)。
46.林敬傑,「薄膜程序處理及回收薄膜生物反應槽(MBR)出流水之研究」,國立中央大學環境工程研究所碩士論文(2007)。
47.板新淨水場,「板新淨水場期末營運成果報告書」,板新淨水場(2008)。
48.范喻翔,「淨水場濾池反洗廢水水量與水質特性之研究」,國立中央大學環境工程研究所碩士論文(2009)。
49.陳啟明,「NF薄膜程序應用於自來水淨水工程之探討」,國立屏東科技大學食品科學系碩士論文(2004)。
50.張添晉、陳榮藏、史午康,「淨水處理場廢污處理技術之研究」,中華民國自來水協會委託報告(1997)。
51.楊正邦,「反沖洗廢水處理技術之研究」,國立台灣科技大學化學工程系碩士論文(2005)。
52.經濟部工業局,「工業廢水逆滲透處理」,經濟部工業局(1994)。
53.經濟部工業局,「廢水薄膜處理技術應用與推廣手冊」,經濟部工業局(2000)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2010-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明