博碩士論文 962206034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.117.107.78
姓名 邱寶賢(BAO-SIAN CIOU)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
(Process development of proton-exchanged waveguides in periodically poled MgO:LiNbO3 for green second harmonic generation)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究
★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究
★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究★ 以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈮酸鋰具有良好的高非線性係數、電光係數、及鐵電姓質,因此我們可以利用這些特性讓一小片的sample距有多功能的能力。利用鐵電性質,我們可以發展出極化反轉的製程;利用非線性係數,我們可以製造出任何波段的雷射;利用電光係數,我們可以應用電光調置產生脈衝雷射。而為了減少光折變的效應,我們應用了鎂摻雜鈮酸鋰晶體來改進光折變的缺點。應用準相位匹配(Quasi-Phase Matching)的原理及極化反轉製程,再結合低損耗的光學波導的製作,我們可以達到良好的轉換效率,產生二倍頻(Second-Harmonic Generation)綠光雷射。
本研究成功的利用外加高壓電場法在5mol./%鎂摻雜鈮酸鋰基材上製作出18μm的極化反轉三階週期。使其反轉面積與全部面積比例為50%(DUTY)左右。
本論文以退火式質子交換波導(Anneal proton exchange, APE)、軟質子交換式波導(Soft Proton Exchange, SPE)及逆退火質子交換式波導(Reverse Proton Exchange, RPE)三種波導且以波導寬度為5、6、7μm做為比較。軟質子交換式波導的轉換效率約為20%W^(-1) cm^(-2),退火式質子交換波導約為30%W^(-1) cm^(-2)。軟質子交換式波導因深度不夠的關係,所以造成耦合的效率降低,只要增加質子擴散時間,即可改善此缺點。其轉換效率預測會大於退火式質子交換波導。因為退火式質子交換波導在製程過程中會造成死層(dead layer),使得非線性係數破壞,因此在相同的耦合條件下,軟質子交換式波導的效率會比退火式質子交換波導更好。而在量測過程中,因光纖耦合波導的效率不好,所以量測泵浦光時會量到其他雜散光,因此所量測出的效率會較低,若改善量測方法,相信可以達到更好的轉換效率。
逆退火式質子交換波導在製程過程中遇到晶格產生破壞的現象,推論是因為氫離子過度累積造成退火時應力過大所產生的破壞現象。所以本論文將會提出對於此製程可行的方法,以改善晶格破壞的情況。
摘要(英) LiNbO3 has higher nonlinear, electro-optic coefficient and ferroelectric property. We could fabricate a single chip with more capability. By using ferroelectric property and lithography, we can develop the periodically inverted domain, Using the nonlinear coefficient, we can generate any wavelength of laser. Using the electro-optic coefficient, we can produce Q-switched pulse laser. For reduce the effect of photorefractive, we choose MgO:LiNbO3 crystal to improve it. Appling the theory of quasi-phase matching and the fabrication of periodically poled, and combination with low loss optic waveguide, we can get high efficiency of second-harmonic generation (SHG) for green light laser.
We successfully fabricate these 18 um 3rd period domain inverse with 5mol/% Mg-doped Linbo3 substrate, the duty cycle about 50%. This paper makes a comparison among three kind of waveguide, Anneal proton exchange, Soft proton exchange, Reverse proton exchange. Conversion efficiency of soft proton exchange waveguide is about 20%W^(-1) cm^(-2), anneal proton exchange waveguide is about 30%W^(-1) cm^(-2). Due to the depth of the soft proton exchange waveguide not quite enough, coupling efficiency become low. If we increase proton exchange time, can improve this situation.It is predicted that conversion efficiency of SPE waveguide would better than APE waveguide. There is a dead layer result in APE waveguide fabrication process, meanwhile destroy nonlinear coefficient. Due to the bad fiber to waveguide coupling efficiency, therefore scattering of fundamental light and noise were detected to reduce it in the measurement. we will have better result by improving the measurement.
In fabrication the reverse proton exchange waveguide, it will cause the crystal-destroyed. We supposed that the more hydrogen ions accumulate the more crack will occur in crystal when the annealing processed therefore, we proposed some of new fabrication method to improve this situation
關鍵字(中) ★ 鈮酸鋰
★ 質子交換
★ 波導
★ 二倍頻
★ 綠光
★ 鎂摻雜
關鍵字(英) ★ LiNbO3
★ Green
★ SHG
★ Waveguide
★ SPE
★ APE
★ PE
★ RPE
★ MgO doped
論文目次 第一章 緒論
1-1 非線性光學波導簡介……………………………1
1-2 研究動機…………………………………………….2
1-3 內容概要…………………………………………….9
第二章 非線性波導理論
2-1 簡介………………………………………………10
2-2 倍頻耦合理論……………………………………10
2-3 準相位匹配理論…………………………………14
第三章 質子交換波導理論
3-1 簡介………………………………………………20
3-2 質子交換波導介紹………………………………21
3-3 質子交換波導理論
3-3-1 退火式質子交換波導………………………28
3-3-2 軟質子交換式波導…………………………31
3-3-3 逆質子交換式波導…………………………34
3-3-4 軟質子交換波導模擬………………………35
第四章 元件製程
4-1 週期性極化反轉元件製程………………………38
4-2 波導的製程流程…………………………………49
第五章 製程分析與量測結果
5-1 軟質子交換式波導製程分析……………………59
5-2 逆質子交換式波導製程分析……………………70
5-3 量測分析…………………………………………72
第六章 結論與未來展望
6-1 結論………………………………………………75
6-2 未來展望…………………………………………76
參考文獻
參考文獻 [1] S. E. Miller, ”Integrated Optics : an introduction,” Bell. Syst.Tech.J. ,48,p2059-2069(1969)
[2]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “interactions between light waves in a nonlinear dielectric”, Phys. Rev. Vol127. No 6. Pp.1918-1939,1962
[3]M. M. Fejer, G. A. Magel, D. H. Jundtm and R. L. Byer, “Quasi-phase=matched second harmonic generation:tuning and tolerance”, IEEE Quantum Electron, Vol.28,No.11,pp.2631-2654-1992
[4]K. Gallo and G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguide”. Appl. Phys., Vol.71, No.8, pp.1020-1022, 1997
[5] Kiminori Mizuuchi, Tomoya Sugita, and Kazuhisa Yamamoto, ”Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3”, OPTICS LETTERS , Vol. 28, No. 15(2003)
[6] G.T.Reed, B.L. Weiss:Nucl. Instrum. Methods Phys. Res. B /vol.B19/20 pt.2(1987) p.907-11
[7] M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T.Taira, ”high-power blue generation from a periodically poled MgO:LiNbO3ridge-type waveguide by frequency doubling of a diode end-pumpedNd:Y3Al5O12 laser”, Appl. Phys. Lett.,83,p3659-3661(2003)
[8] Martin M. Fejer, G.A Magel, Dieter H. Jundt, and Robert L. Byer ”Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances ”IEEE J. Quantum elextron.28,11.p2631,1992
[9] L. E. Myers, G . D Miller, R .C. Eckardt. M. M. Fejer, and R. L. Byer ”Quasi-Phase-Matched 1.064 μm pumper optical parametric oscillator in bulk periodically poled LiNbO3 ”Opt. Lett, 20, 1, p52,1995
[10]林宜慶,”高電壓致鈮酸鋰小週期區域反轉與動力學研究”,國立台灣大學光電工程研究碩士論文,1999.
[11] Zhenhuan Ye, Qihong Lou, Jingxing Dong, Yunrong Wei, and Lei Lun, “compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide cystals”, Opt. Lett., 30, p.73(2005).
[12]Yu. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, and A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchange waveguide in MgO-doped LiNbO3: Optical and structure properties”, J. Appl. Phys., Vol.94, No.2,pp.1163,2003.
[13]S. Steinberg, R. Goring, T. Henning, and A. Rasch. Opt. Lett., Vol.20, pp.683,1995
[14] M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, ”high-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser”, Appl. Phys. Lett.,83,p3659-3661(2003)
[15] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
[16]L. E. Myers, :Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate,:Ph.D, Dissertation, Department of Electrical engineering, Stanford University, Stanford, CA,1995
[17] M. M. Fejer, Phys. Today 47, 25 (1994)
[18] M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides”, OPTICS LETTERS, Vol. 16, No. 23, 1991
[19] Yuri N. Korkishko, Associate Member, IEEE, Vyacheslav A. Fedorov, Associate Member, IEEE, andOksana Y. Feoktistova, “LiNbO3 Optical Waveguide Fabrication by
High-Temperature Proton Exchange”, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 4, APRIL 2000
[20] K. El Hadi , P. Baldi , M.P. De Micheli , D.B. Ostrowsky. ,Yu.N. Korkishko , V.A. Fedorov , A.V. Kondrat’ev, “Ordinary and extraordinary waveguides
realized by reverse proton exchange on LiTaO,” Optics Communications 140 (1997) 23-26
[21] Yu. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, and T. V. Morozova, “Characterization of a-phase soft proton-exchanged
LiNbO3 optical waveguides”, J. Opt. Soc. Am. A, Vol. 18, No. 5, 2001
[22] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-indexwaveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 (1982).
[23]K. Yamamoto, K. Mizuuchi, Tetsuo”low-loss channel waveguide in MgO:LiNbO3 and LiTaO3 pyrophosphoric acid proton exchange”, Jpa. J. Appl. Phys. 31,4,p1059,1992
[24] K. Yamamoto, Tetsuo” Characteristics of pyrophosphoric acid PE in LiNbO3”, J. Appl. Phys. 70, 11, p6663, 1991
[25] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram ofHxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics., 2, p187-196 (1996).
[26] Yu. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, and A. N. Alkaev “Proton-Exchanged Waveguides in MgO-doped LiNbO3: Optical and Structural Properties,” J. Appl. Phy.,vol.94,pp1163-1169(2003)
[27] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics.,vol.2,pp187-196(1996)
[28] Yuri N. Korkishko, Associate Member, IEEE, Vyacheslav A. Fedorov, Associate Member, IEEE, and Oksana Y. Feoktistova, “LiNbO3 Optical Waveguide Fabrication by High-Temperature Proton Exchange”, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 4, APRIL 2000
[29] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 (1982).
[30] J. Manuel, and M. M. de Aelmeda, “Design methodology of annealed H+waveguides in ferroelectric LiNbO3”, Optical. Engineering., 16, p.1844-1846(1991).
[31] 余兆陞,”以鎂摻雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究”中 央大學碩士論文,DOP (2008).
[32] Sandeep T. Vohra, Alan R. Mickelson, and Sally E. Asher, ”diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides”, J. Appl. Phys. 66, p.5161-5174
(1989).
[33] A. Loni, R. M. De La Rue, and J. M. Winfield, “Proton exchanged, lithium niobate planar optical waveguides: chemical and optical properties and room temperature hydrogen isotopic exchange reactions,” J. Appl. Phys. 61, 64–67 (1987).
[34] José Manuel M. M. de Almeida Universidade de Trás-os-Montes e Alto Douro Departamento de Física 5001-811 Vila Real, Portugal E-mail: jmmma@utad.pt ” Design methodology of annealed H+ waveguides
in ferroelectric LiNbO3”, Optical Engineering 46_6_, 064601 _June 2007_
[35] Y. Ishigame, T. Suhara, and H. Nishihara, ”LiNbO3 waveguide second-harmonic generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett., vol.16, p375-377(1991)
[36] M. Yamada, N. Nada, M. Saitoh and K. Watanabe,”First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.,vol.62,
[37] D. A. Bryan, Robert Gerson, H. E. Tomaschke, ”Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.,44,p847-849(1984)
[38] J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of Laser diode light in a lithium niobate channel waveguide,” IEEE Photon Techonol.Lett.,vol.1,p316-318(1989)
[39] Alan. C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta,”Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett.,vol.60, p2828-2830(1992)
[40] K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “electric-field poling in Mg-doped LiNbO3”, J. Appl. Phys.,vol.96,p6585-6590(2004)[30] G. D. Miller” Periodically poled lithium niobate : modeling,fabrication,and nonlinear-optical performance”
[41] H.Ishizuki, I. Shoji, and T. Taira, ”Periodically poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.,vol.82, p4062-4064(2003)
[42] A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields” Appl. Phys. Lett.,vol.69,p1565-1567(1996)
[43] K. El Hadi, P. Baldi, S. Nouh, and M. P. De Micheli,” Control of proton exchange for LiTaO3 waveguides and thecrystal structure of HxLi12xTaO3”, OPTICS LETTERS, Vol. 20, No. 16 , 1995
[44] Y. Furukawa, K. Kitamura, S. Takekawa, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett., 23, pp1892-1894(1998).
[45] M. Digonnet, M. Fejer, and R. Byer, “Characterization of proton-exchanged waveguides inMgO:LiNbO3”, Vol. 10, No. 5, OPTICS LETTERS, 1985
[46] 余兆陞,” 退火式質子交換波導PPLN 電光調制TM 模態轉輻射偏振態之研究”中 央大學碩士論文,DOP (2008).
[47] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi,and A. Leycuras” Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate”, APPLIED OPTICS y Vol. 35, No. 36 y 20 December 1996
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2009-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明