博碩士論文 92323081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.145.59.89
姓名 邱清楓(Ching-feng Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音速高溫衝擊流之暫態分析
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 質子交換膜燃料電池陰極端之兩相流模擬與研究
★ 矽相關半導體材料光學模式之實驗量測儀器發展★ 燃料電池複合材料雙極板研發 及性能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文是應用數值方法,在考慮輻射效應下,探討超音速高溫衝擊流熱流特性隨時間的變化情形。整個幾何模型由於軸對稱,簡化成二維模型。紊流模式採用k-?模型。輻射熱傳利用離散座標法求解,包含吸收與放射效應。數值計算主要分為二個部分,第一部分為固定噴嘴位置,改變噴嘴出口條件和衝擊距離,第二部分為噴嘴隨時間向上移動,改變噴嘴出口條件。
固定噴嘴位置時,噴流在離開噴嘴後,即開始向下擴張,馬赫盤逐漸靠近地面,在環流區要產生之前才回升至一固定高度,馬赫盤內為一高溫區,在時間為0.001秒時,噴流受到各震波間相互影響而產生一股強力迴流,將高溫區內的能量往外帶,產生一大範圍的次高溫區,直到環流區形成時,迴流消失,次高溫區內的能量隨著噴流由軸向轉為徑向帶走而跟著消失。增加噴嘴出口溫度時,馬赫盤越快靠近地面而回升,環流區越早形成。當衝擊距離增加到四倍噴嘴直徑(Z/D=4)時,無環流區產生,再增加到Z/D=6時,會有一較小範圍的環流區產生。對所探討之參數範圍,在時間0.01秒後流場與溫度場之特性已趨於穩定。
移動噴嘴時,環流區形成之後,噴嘴繼續向上移動,馬赫盤隨之上升,整個環流區向上拉長,直到噴嘴到達Z/D=4時,環流區消失,流場結構轉為無環流結構,當噴嘴持續上升到Z/D=6時,才又產生環流區。噴嘴出口速度和壓力越大時,馬赫盤上升導致環流區被向上拉長的趨勢越明顯,增加噴嘴出口壓力,流場不會先變成無環流結構的狀態之後,再產生環流區,而是一直保持著有環流結構的狀態。在時間為0.01秒之後,噴嘴已遠離衝擊面,流場和溫度場之特性趨於穩定。
摘要(英) The transient flow and thermal characterisitcs of a hot supersonic impinging jet with radiation effects are studied. Two dimensional, cylindrical, unsteady supersonic impinging jet is simulated using the STAR-CD. Turbulent flow is simulated using the κ-ε model. The equation of radiative transfer is solved by the discrete-ordinate method. Results are obtained for two cases. Case one is for fixed nozzle position while case two is for moving nozzle. The effects of various parameters, such as nozzle exit temperature, pressure, velocity and the distance between the nozzle and the impingement surface are studied.
For fixed nozzle case, the results show that as the jet leaves the nozzle, it expands down quickly. Before the circulation bubble come to existence, the Mach disk moves towards the impingement surface gradually. At the time of 0.001 second, the jet has a strong recirculation near the end of the oblique shock, creating a large-scale second high temperature field. Increasing the nozzle exit temperature causes the bubble to form earlier. The flow reaches steady state at 0.01 second approximately.
For the moving nozzle case, the results show that after the circulation bubble come to existence, the Mach disk moves upwards with the moving nozzle, and hence the circulation bubble is also pulled upward. As the nozzle reaches the position where the distance between the nozzle and the impingement surface is 4 times the nozzle diameter (Z/D=4), the circulation bubble vanishes. The bubble will form again at Z/D=6, but become smaller in size. Increasing the nozzle exit pressure or velocity causes the phenomenon of the circulation bubble be pulled upward more obviously. The circulation bubble does not vanish at Z/D=4 for higher relative pressure (PR=3.4) case. After 0.01 second, the nozzle is far from the impingement surface, the flow is not affected by the pressure of the impingement plate.
關鍵字(中) ★ 高溫衝擊流
★ 超音速衝擊流
★ 熱輻射
★ 離散座標法
關鍵字(英) ★ impinging jet
★ radiation
★ supersonic jet
★ transient flow
論文目次 誌謝 Ι
中文摘要 II
英文摘要 III
目錄 V
表目錄 VII
圖目錄 VII
符號表 XVI
第一章 緒論 1
1.1 前言 1
1.2 超音速衝擊流介紹 2
1.3 超音速衝擊流文獻回顧 4
1.4 輻射熱傳文獻回顧 7
1.5 研究動機 8
第二章 數學模型與數值方法 15
2.1 物理模型與基本假設 15
2.2 統馭方程式 15
2.2.1 流場統馭方程式 15
2.2.2 紊流方程式 16
2.2.3 輻射熱傳方程式 18
2.2.4 邊界條件 18
2.3 數值方法 19
2.4 數值方法驗證與各項測試 23
2.4.1 數值方法驗證 23
2.4.2 格點獨立測試 24
VI
2.4.3 離散座標測試 24
2.4.4 時間間隔dt 測試 25
第三章 結果與討論 31
3.1 固定噴嘴 31
3.1.1 噴嘴出口溫度之影響 32
3.1.2 噴嘴出口速度之影響 34
3.1.3 噴嘴出口壓力之影響 35
3.1.4 不同衝擊距離之影響 36
3.2 移動噴嘴 37
3.2.1 噴嘴出口溫度之影響 38
3.2.2 噴嘴出口速度之影響 39
3.2.3 噴嘴出口壓力之影響 40
第四章 結論與建議 114
4.1 結論 114
4.2 未來研究方向與建議 115
參考文獻 116
參考文獻 [1] Martin, H., ”Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces,” Advanced Heat Transfer, Vol. 13, 1977, pp. 1-60.
[2] Button, D. L., and Wilcox, D., ”Impingement Heat Transfer - A Bibliography 1890-1975”, Previews Heat Transfer, Vol. 4, 1978, pp. 83-98.
[3] Viskanta, R., ”Heat Transfer to Impinging Isothermal Gas Flame Jets,” Experimental Thermal and Fluid Science, Vol. 6, 1993, pp. 111-134.
[4] Gubanova O. I., Lunev V. V., and Plastinina L. N., ”The Central Breakaway Zone with Interaction between a Supersonic Underexpanded Jet and a Barrier,” Fluid Dynamics, Vol. 6, 1973, pp. 289.
[5] Carling, J. C., and Hunt, B. L., ”The Near Wall Jet of Normally Impinging, Uniform, Axisymmetric, Supersonic Jet,” Journal of Fluid Mechanics, Vol. 66, 1974, pp. 159-176.
[6] Kalghatgi, G. T., and Hunt, B. L., ”The Occurrence of Stagnation Bubbles in Supersonic Jet Impingement Flows,” Aeronautical Quarterly, Vol. 22, 1976, pp. 169-185.
[7] Lamont, P. J., and Hunt, B. L., ”The Impingement of Underexpanded, Axisymmetric Jets on Perpendicular and Inclined Flat Plates,” Journal of Fluid Mechanism, Vol. 100, 1980, pp. 471-511.
[8] Dash, S. M., and Wolf, D. E., ”Interactive in Supersonic Jet Mixing Problems, Part1: Phenomenology and Numerical Modeling Techniques,” AIAA Journal, Vol. 22, 1984, pp. 905-913.
[9] Chuech, S. G., Lai, M. C., and Feath, G. M., ”Structure of Turbulent Sonic Underexpanded Free Jets,” AIAA Journal, Vol. 27, 1989, pp. 545-559.
[10] Cumber, P. S., Fairweather, M., Falle, S. A .E. G., and Giddings, J. R., ”Prediction of The Structure of Turbulent, Moderately Underexpanded Jets,” Journal of Fluids Engineering, Vol. 116, 1994, pp. 707-713.
[11] Cumber, P. S., Fairweather, M., Falle, S. A .E. G., and Giddings, J. R., ”Prediction of The Structure of Turbulent, Highly Underexpanded Jets,” Journal of Fluids Engineering, Vol. 117, 1995, pp. 599-604.
[12] Cumber, P. S., Fairweather, M., Falle, S. A .E. G., and Giddings, J. R., ”Prediction of Impacting Sonic and Supersonic Jets,” Journal of Fluids Engineering, Vol. 119, 1997, pp. 83-89.
[13] Sarker, S., Erlebacher, G., Hussaini, M. Y., and Kreiss, H. O., ”The Analysis and Modeling of Dilatational Terms in Compressible Turbulence,” Journal of Fluid Mechanics, Vol. 227, 1991, pp. 473-493.
[14] Kim, K. H., and Chang, K. S., ”Axismeetric Impingement of a Hot Jet on a Flat Plate: Equilibrium Flow Analysis of High-Temperature Air,” Shock Waves, Vol. 4, 1994, pp. 155-162.
[15] 陳玉芬, 超音速噴流和聲波之數值研究, 成功大學航太所碩士論文, 1996
[16] 李楷錫, 超音速噴流之數值研究, 中華大學機械與航太工程研究所碩士論文,1999
[17] Jagadeesh, G., Onodera, O., Ogawa, T., Takayama, K., Jiang, Z., "Micro-shock waves generated inside a fluid jet impinging on plane wall," AIAA Journal, Vol. 39, 2001, pp. 424-430
[18] Zakrzewski,S., Milton,B.E., Pianthong,K., Behnia, M., "Supersonic liquid fuel jets into quiescent air," International Journal of Heat and Fluid Flow, Vol.25,2004,pp.833-840.
[19] Shih-Chun Peng, Chung-Jen Tseng, Hao-Yu Wang, Chii-Fang Kao and Wen-Shan Lin, 2004, ”Hot Supersonic Round Jets With Radiation Effects,” 中華民國燃燒學會第十四屆學術研討會,pp. I-39.
[20] Hao-Yu Wang, Chung-Jen Tseng, Chii-Fang Kao and Wen-Shan Lin, 2004, ”Supersonic Hot Impinging Jets,” The 11th National Computational Fluid Dynamics Conference, Paper Number:CFD11-0602.
[21] Chandrasekhar,S., ”Radiative Transfer,” Dover Publications, New York, 1996.
[22] Ozisik, M. N., Li, H. Y., and Tsai, J. R., ”Two-Dimensional Radiation in a Cylinder with Spatially Varying Albedo,” Journal of Thermophysics, Vol. 6, 1992, No. 1, pp. 180-182.
[23] Jendoubi, S., Lee, H. S., and Kim, T. K., ”Solutions for Radiatively Participating Media in a Cylindrical Enclosure,” Journal of Thermophysics and Heat Transfer, Vol. 7, 1993, pp. 213-219.
[24] Coelho, P. J., Goncalves, J. M., and Trivic, D. N., ”Modelling of Radiative Heat Transfer in Enclosures with Obstacles,” Int. J. Heat Mass Transfer, Vol. 41, 1998, pp. 745-756.
[25] Kaykol, N., Selcuk, N., Campbell, I., Omer, L. G., ”Performance of Discrete Ordinates Method in a Gas Turbine Combustor simulator,” Experimental Thermal and Fluid Science, Vol. 21, 2000, pp. 134-141.
[26] Jones, W. P., and Launder, B. E., ”The Prediction of Laminarization with a Two-Equation Model of Turbulence,” Int. J. Heat Mass Transfer, Vol. 15, 1972, pp. 301-314.
[27] Rodi, W., ”Influence of Buoyancy and Rotation on Equations for Turbulent Length Scale,” Proceeding 2nd Symposium On Turbulent Shear Flows, 1979.
[28] Lauder, B. E., and Spalding, D. B., ”The Numerical Computation of Turbulent Flow, Computing Method In Applied Mechanics & Engineering,” Vol. 3, 1974, pp. 269.
[29] Tahry, E., and Sherif, H., ”Equation for Compressible Reciprocating Engine Flows,” AIAA Journal of Energy, Vol. 7, 1983, No. 4, pp. 345-353.
[30] Boussinesq, J., Theorie Anaytique de la Chaleur, Vol. 2, Gauthier-Villars, Paris, 1903.
[31] Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, Chap. 15, 1993, pp. 541-571.
[32] Howell, J. R., Thermal Radiation Heat Transfer, Hemisphere, Washington, Chap. 13, 1992, pp. 597-681.
[33] Menart, J., ”Radiative Transport in a Two-Dimensional Axisymmetric Thermal Plasma Using the S-N Discrete Ordinates Method on a Line-by-Line Basis,” Journal of Quantum Spectroscopy and Radiative Transfer, Vol. 67, 2000, pp. 273-291.
[34] Jendoubi, S., Lee H. S., and Kim T. K., ”Discrete Ordinates Solutions for Radiatively Participating Media in Cylindrical Enclosure,” Journal of Thermophysics and Heat Transfer, Vol. 7, 1993, pp. 356-364.
[35] Carlson, B. G., and Lathrop, K. D., ”Discrete-Ordinates Angular Quadrature of the Neutron Transport Equation”, Technical Information Series Report LASL-3186, Los Alamos Scientific Laboratory, 1965.
[36] Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., Chap. 6, 1980.
[37] Clark, G. C., Chu, C. M., and Churchill, S. W., ”Angular Distribution Coefficients for Radiation Scattered by a Spherical Particle,” Journal of the Optical Society of America, Vol. 47, 1980, pp. 1505-1509.
[38] Thynell, S. T., ”Treatment of Radiation Heat Transfer in Absorbing, Emitting, Scattering Two-Dimensional Cylindrical Media,” Numerical Heat Transfer, Vol. 17, 1990, pp. 449- 472.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2005-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明