博碩士論文 965202089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.133.148.76
姓名 溫致絹(Chih-chuan Wen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用外形及紋理特徵做入侵者偵測
(Invader Detection based on Shape and Texture)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的發展,取像設備價格的降低及普遍性提高,監控系統目前已經廣泛的應用在日常生活當中,一般大眾開始願意在家中裝設保全系統,藉以保護家人和財產的安全。但一般監控系統若稍有些許環境的影響(例如:風速過強…等)造成畫面的變化,就會觸動保全系統,過於頻繁的錯誤警報,久之便降低對於保全系統警報所應有的警覺性及靈敏度。
本論文結合影像處理中及加入倒傳遞類神經網路的技術,建構一套行人偵測系統,進以判斷畫面中是否有入侵者。首先,運用高斯混合模型建立動態背景,以利於取出畫面中的移動物體。接著,利用移動物體形狀的資訊計算區域比對(chamfer distance)及結合事前利用類神經網路訓練過後的資料來判斷出移動物體是否為人或是其他動物或其他影響之變因,若系統判斷移動物體為人則發出警告給監控者。最後由實驗結果證明,本論文實做之方法有一定程度的辨識率。
摘要(英) Due to the fast development of computer and video technologies and the cost-down of capturing devices, surveillance systems are widely applied in our daily life. People use the home security system to protect their family and property. However, most security systems will send alarm messages to users when the sensors were triggered, but cannot identify what the intruder is. If the security systems often make the false alarm caused by animals, people may relax their vigilance as time pass. In order to solve those common problems of traditional home security systems, we combine the image recognition, motion detection, image processing, and Neural Network to build a system that can identify whether the illegal intruder is human or other animal. First, we construct the background map to obtain the foreground by using Gaussian mixture model (GMM). Then, we combine shape-based detection and Back-propagation Neural Network to determine whether the foreground is human or not. If the foreground is human, the system will issue an alarm. Some experimental results were demonstrated to verify the performance of the proposed method.
關鍵字(中) ★ 入侵者偵測
★ 類神經網路
★ 外型階層
關鍵字(英) ★ Invader Detection
★ Texture
★ Shape
論文目次 ABSTRACT i
摘要 ii
目錄 iii
圖目錄 v
表格目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究 2
1.3 系統流程 4
1.4 論文架構 6
第二章 前景偵測與擷取 7
2.1高斯混合背景簡介 9
2.2 高斯混合模型之描述 10
2.3 參數初始化 11
2.4 期望值最大演算法 13
2.5 高斯混合模型架構 14
第三章 利用外型階層辨識 15
3.1 外型階層的建立 15
3.2 利用外型階層辨識 17
第四章 類神經網路訓練與辨識 20
4.1 類神經網路簡介 20
4.2 類神經網路訓練辨識 22
第五章 實驗結果 27
5.1 前景擷取 28
5.2 外型特徵辨識 31
5.3 類神經網路辨識 35
5.4 外型特徵與類神經網路辨識 38
第六章 結論與未來工作 41
6.1 結論 41
6.2 未來工作 42
參考文獻 43
參考文獻 [1] R. Cucchiara, C. Grana, M. Piccardi and A. Prati, “Detecting moving objects, ghosts and shadows in video streams,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.25, no.10, pp. 1337-1342, 2003.
[2] O. Javed, K. Shafiqu and M. Shah, “A hierarchical approach to robust background subtraction using color and gradient information,” in Proceedings of IEEE Conference Computer Vision and Pattern Recognition, pp. 22-27, 2001.
[3] L. D. Stefano, S. Mattoccia and M. Mola, “A change-detection algorithm based on structure and colour,” in Proceedings of IEEE Conference Advanced Video and Signal Based Surveillance, pp.252-259, 2003.
[4] I. Haritaoglu, D. Harwood and L. S. Davis, “W4: real-time surveillance of people and their activities,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 809-830, 2000.
[5] S. Kang, H. Byun, S. W. Lee, “Real-time pedestrian detection using support vector machines,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 17, no. 3, pp. 405-416 , 2003.
[6] C. Curio, J. Edelbrunner, T. Kalinke, C. Tzomakas, W. V. Seelen,“Walking pedestrian recognition,” IEEE Transaction on Intelligent Transportation System, vol.1, no.3, pp. 155-163, 2000.
[7] L. C. Fu, and C. Y. Liu, “Computer vision based object detection and recognition for vehicle driving”, in Proceedings of IEEE Conference Robotics & Automation, pp.2634-2641, 2001.
[8] L. Zhao and C. E. Thorpe, “Stereo and neural network-based pedestrian detection,” IEEE Transaction on Intelligent Transportation Systems, vol. 1, no. 3, pp. 148-154, 2000.
[9] D. M. Gavrila and S. Munder, “Multi-cue pedestrian detection and tracking from a moving vehicle,” International Journal of Computer Vision, vol. 73, no.1, pp. 41-59, 2007.
[10] C. Wöhler, and J. K. Anlauf, “Real-time object recognition on image sequences with the adaptable time delay neural network algorithm – applications for autonomous vehicles,” International Journal of Image and Vision Computing, vol. 19, no. 9-10, pp. 593-618, 2001.
[11] U. Franke, D. Gavrila, S. Görzig, F. Lindner, F. Paetzold, and C. Wöhler, “Autonomous driving goes downtown,” IEEE Intelligent Systems, vol. 13, pp. 40-48, 1998.
[12] J. Heikkilä, and O. Silvén, “A real-time system for monitoring of cyclists and pedestrians,” in IEEE Proceedings of the Second IEEE Workshop on Visual Surveillance, pp. 74-81, 1999.
[13] Wren, R. Christopher, Azarbayejani, Ali, Darrell, Trevor, Pentland, Alex, “Pfinder: real-time tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780-785, July 1997.
[14] I. Haritaoglu, D. Harwood, L. S. Davis, ”W4:who? when? where? what? a real-time system for detecting and tracking people,” in Proceedings of International Conference on Face and Gesture Recognition, Apr. , pp.14-16, 1998.
[15] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt and L. Wixson, “A system for video surveillance and monitoring,” Tech. Rep., The Robotics Institute, Carnegie Mellon University, CMU-RI-TR-00-12, 2000.
[16] J. Barron, D. Fleet, S. Beauchemin, “Performance of optical flow techniques,” International Journal of Computer Vision, vol. 12, no. 1, pp. 42-77, 1994.
[17] P. KaewTraKulPong and R. Bowden, “An improved adaptive background mixture model for real-time tracking with shadow detection,” in Proceedings of European Workshop Advanced Video Based Surveillance Systems, 2001.
[18] G. Borgefors, “Distance transformations in digital images,” in Proceedings of Conference on Computer Vision, Graphics, and Image Processing, 34(3):344–371, 1986.
[19] D. M. Gavrila, and V. Philomin, “Real-time object detection for “smart” vehicles,” in Proceedings of International Conference on Computer Vision, Kerkyra, Greece, pp. 87–93, 1999.
[20] J. T. Tou and R. C. Gonzalez, “Pattern recognition principles,” Addison-Wesley Publishing, 1974.
[21] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting compact well-separated cluster,” International Journal of Cybernetics, vol. 3, no. 3, pp.32–57, 1973.
[22] 李奇霖,車輛牌照自動辨識系統-使用類神經網路,淡江大學,碩士論文,1999.
[23] ftp://ftp.cc.gatech.edu/pub/gvu/cpl/walkers/subjects/
[24] http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
[25] S. Munder and D. M. Gavrila. “An experimental study on pedestrian classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp.1863-1868, 2006.
指導教授 范國清(Kuo-chin Fan) 審核日期 2009-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明