博碩士論文 945202057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:52.14.252.16
姓名 陳建仁(Chien-Jen Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 改良中介性相關計算之研究
(A Study of Improving the Computation Related to Betweenness)
相關論文
★ 一種減輕LEO衛星網路干擾的方案★ 萃取駕駛人在不同環境之駕駛行為方法
★ 非地面網路中基於位置的隨機接入分配方法★ TrustFADE: 針對可程式化邏輯區塊之安全認證方法
★ 捷徑問題在特殊圖形上之演算研究★ 行動電腦教室與其管理系統的設計與建置
★ 蛋白質體視覺化系統之實作★ 最小切割樹群聚演算法極端情形之研究
★ 教室內應用無線科技之一對一數位學習模式★ 蛋白質交互作用網路之視覺化系統
★ 以賓果式遊戲輔助技巧熟練之數位學習環境設計與實作★ 蛋白質註解的三維視覺化工具
★ Joyce 2:一個在一對一數位教室環境下之小組競爭遊戲★ 同儕計算網路上內文散佈演算法之實作與效能評估
★ 在直角多邊形上使用基因演算法畫樹之研究★ 經由潛在語義的線索從蛋白質交互作用網路進行蛋白質功能的預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中介向心性是網路分析中,用來量化網路中各個部份的重要性,以協助研究者有系統的找出想要研究的部分的一個重要方法。中介向心性的使用相當的廣泛,但其特性使計算時間一直居高不下。目前已知最快的演算法,在有權重圖上需要Ο(|V|2logV+VE)的時間,在無權重圖上需要Ο(VE)的時間。但在某些應用,如Girvan和Newman的演算法上,仍然花去太多時間。
Girvan和Newman認為,中介向心性越高的邊,越有可能是連接二個社群的邊。他們因此設計出一個演算法,不斷重複進行「計算所有邊的中介向心性→移除擁有最高中介向心性的邊」的動作,來建立一個表達網路中各個社群間的階層式關係之系統樹狀圖。
在本篇論文中,我們以隨機抽樣的啟發式邊中介向心性計算,來加快找到網路上擁有最大中介向心性的邊的速度,這同時也可用來加快Girvan和Newman之演算法。另外,我們也設計了一個適用於遞減網路上的改良中介向心性計算,來加速Girvan和Newman之演算法。我們在11個隨機產生的網路和5個非隨機產生的網路上測詴此改良演算法。在隨機網路上,執行速度最高加快為約原本的34倍;在非隨機網路上,執行速度最高加快為約原本的15倍。
摘要(英) In network analysis, betweenness centrality is essential for researchers to measure the importance of each parts of the network and find out the part to be study further. Betweenness centrality has a widespread use, but it is costly to compute. Currently, the fastest known algorithm requires Ο(|V|2logV+VE) time on weighted graph and Ο(VE) time on unweighted graph. But in some applications, such as the algorithm of Girvan and Newman, still cost too much time for computing.
Girvan and Newman thought that the edge which has the higher betweenness centrality has more probability to be the edge which connects two communities. According to this, they designed an algorithm which does the operation “compute the betweenness centrality of all edges → remove the edge which has the highest betweenness centrality” repeatedly and then constructs a dendrogram which represents the hierarchical relationships between the vertices of the network.
In this thesis, we use a random sampling heuristic betweenness centrality computation to accelerate the speed of finding the edge which has the maximum betweenness centrality. This can also be used to speed up the algorithm of Girvan and Newman. Besides, we also design an improved exact betweenness centrality compute which is suitable for decremental networks to accelerate the algorithm of Girvan and Newman. We test the improved algorithm on 11 random generated networks and 5 non-random generated networks. On random generated networks, we gained a maximum speedup about 34 times. On non-random generated networks, we gained a maximum speedup about 15 times.
關鍵字(中) ★ 中介性
★ 中介向心性
★ 最短路徑
★ 分群
★ 向心性
關鍵字(英) ★ centrality
★ betweenness
★ centrality betweenness
★ shortest path
★ cluster
論文目次 摘要 ........................................ i
Abstract ................................... ii
誌謝 ....................................... iv
目錄 ........................................ v
圖目錄 ..................................... vi
表目錄 ................................... viii
第1章 序論 .................................. 1
第2章 中介性計算 ............................ 8
2.1 點中介性計算 .......................... 8
2.2 邊中介性計算 ......................... 15
2.3 基於邊中介性計算的分群演算法:GN演算法 16
第3章 啟發式邊中介性計算 ................... 23
3.1 啟發式邊中介性計算 ................... 24
3.2 實驗資料及來源 ....................... 25
3.3 實驗結果 ............................. 27
第4章 基於邊中介性之分群法的改良 ........... 38
4.1 改進方法 ............................. 42
4.2 實驗結果 ............................. 48
第5章 結論與未來工作 ....................... 51
參考文獻 ................................... 53
參考文獻 J. M. Anthonisse: The rush in a directed graph. Technical Report BN 9/71, Stichting Mathematisch Centrum, Amsterdam (1971)
N. Biggs, E. Lloyd and R. Wilson: Graph Theory, 1736-1936. Oxford University Press (1986)
Ulrik Brandes and Christian Pich: Centrality Estimation in Large Networks. International Journal of Bifurcation and Chaos, special issue on Complex Networks' Structure and Dynamics. (2007)
Ulrik Brandes: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25, 163 (2001)
C.M. Deane, L. Salwinski, I. Xenarios and D. Eisenberg: Protein interactions: two methods for assessment of the reliability of high throughput observations. Cell Proteomics, 1, 349–356. (2002)
P. Erdos and A. Renyi: On random graphs, Publicationes Mathematicae 6, 290–297 (1959).
David Eppstein and Joseph Wang: Fast Approximation of Centrality. Journal of Graph Algorithms and Applications, 8(1):39–45. (2004)
L. C. Freeman: A set of measures of centrality based on betweenness. Sociometry, 40:35-41 (1977)
Feng Luo, Yunfeng Yang, Roger Chang, Jizhong Zhou, and Richard H. Scheuermann: Modular organization of protein interaction networks. Bioinformatics, Vol. 23 no. 2, 207–214 (2007).
M. Girvan and M. E. J. Newman: Community structure in social and biological networks. Proceedings of the National Academy of Sciences USA 99(12) (2002) 7821-7826
Jonathan L. Gross and Jay Yellen: Handbook of graph theory. 2004
P. Hage and F. Harary: Eccentricity and centrality in networks. Social Networks, 17:57-63 (1995)
Monika R. Henzingera, Philip Kleinb, Satish Raoc and Sairam Subramanian: Faster shortest-path algorithms for planar graphs, J. Comput. Syst. Sci, 53, 2-23, 1997.
Maliackal Poulo Joy, Amy Brock, Donald E. Ingber, and Sui Huang: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. (2005), 96–103
H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai: Lethality and centrality in protein networks. Nature, 411:41–42. Brief communications. (2001)
M. E. J. Newman and M. Girvan: Finding and evaluating community structure in networks. PHYSICAL REVIEW E 69, 026113 (2004)
J. Niemincn: On centrality in a graph. Scandinavian Journal of Psychology 15:322-336. (1974)
S. Pettie: A new approach to all-pairs shortest paths on real-weighted graphs, Theoret. Comput. Sci., 312:47-74, 2004.
Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and Domenico Parisi: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101, 2658–2663 (2004).
G. Sabidussi: The centrality index of a graph. Psychometrika, 31:581-603 (1966)
A. Shimbel: Structural parameters of communication networks. Bulletin of Mathematical Biophysics, 15:501-507 (1953)
M. Thorup: Undirected single-source shortest path with positive integer weights in linear time, J. ACM, 46(3):362-394, 1999.
Joshua R. Tyler, Dennis M. Wilkinson, and Bernardo A. Huberman: Email as spectroscopy: Automated discovery of community structure within organizations. In M. Huysman, E. Wenger, and V. Wulf (eds.), Proceedings of the First International Conference on Communities and Technologies, Kluwer, Dordrecht (2003).
Elizabeth A. Winzeler, et al: Functional characterization of the Saccharomyces cerevisiae genome by gene deletion and parallel analysis. Science, 285, 901–906, 1999.
D. J. Watts and S. H. Strogatz: Collective dynamics of `small-world' networks, Nature 393, 440-442 (1998).
W. W. Zachary: J. Anthropol. Res. 33, 452–473 (1977)
指導教授 何錦文(Chin-Wen Ho) 審核日期 2010-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明