博碩士論文 92541012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.218.66.149
姓名 羅時湧(Shih-Yung Lo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具組成梯度能隙載子注入層的高分子與薄膜白光發光二極體之研究
(Studies of Polymer and Thin-Film-White Light-Emitting Diodeswith Composition-Graded Carrier-Injection Layers)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的第一部份探討利用組成梯度能隙非晶質碳化矽薄膜作為載子注入層以及氧氣電漿處理氧化銦錫透明電極來提升高分子發光二極體的光電特性。首先以組成梯度取代固定能隙的非晶質碳化矽薄膜作為高分子發光二極體的電子注入層時,元件的臨界電壓與亮度分別由7.3 V、3162 cd/m2提升至6.3 V、5829 cd/m2,元件特性的提升是由於利用組成梯度技術可形成能帶較平順的電子注入層而提升載子的注入效率,也減少了載子在電子注入層與發光層間的復合。此外,利用氧氣電漿處理氧化銦錫透明電極也可以提升元件臨界電壓與亮度分別至5.1 V、6250 cd/m2。再者,結合組成梯度能隙非晶質碳化矽薄膜作為高分子發光二極體的電子與電洞注入層以及氧氣電漿處理氧化銦錫透明電極可進一步提升元件的亮度至9350 cd/m2。
第二部份探討氫化製程對具有組成梯度能隙載子注入層的非晶質碳薄膜白光發光二極體的影響,以及利用附加組成梯度能隙非晶質矽鍺薄膜作為載子注入層來提升薄膜白光發光二極體的光電特性。首先,我們製作出一個以非晶質碳薄膜為發光層以及組成梯度能隙非晶質碳化矽薄膜為載子注入層的薄膜白光發光二極體,此薄膜白光發光二極體可操作在直流與交流的模式下。實驗中發現發光層與載子注入層的氫化製程處理可大幅提昇元件的光電特性,元件在順向與逆向偏壓的直流條件下可達到最高的亮度分別為813與507 cd/m2,元件特性的提升是由於氫化製程可填補非晶質薄膜表面的斷鍵。此外,我們也探討了非晶質碳薄膜白光發光二極體的電傳導機制,在低偏壓的範圍時,傳導機制由歐姆電流所主導;在高偏壓的範圍時,則是由普爾-法蘭克放射電流所主導。再者,我們發現到當外加交流訊號頻率超過1 KHz時,元件的電致發光頻譜有明顯紅移的現象,這可歸因於非晶質材料較低的載子遷移率所導致。最後,利用附加組成梯度能隙非晶質矽鍺薄膜作為載子注入層可進一步提升薄膜白光發光二極體的光電特性,這是因為組成梯度能隙非晶質矽鍺薄膜可形成較低的位障與在鋁電極與非晶質鍺薄膜間形成部分的多晶質鍺薄膜層,因而提升載子的注入效率與降低接面間的接觸電阻。
摘要(英) In this dissertation, first, the optoelectronic characteristics of poly(2-methoxy-5-(2’ethyl-hexoxy)-1, 4-phenylene-vinylene) (MEH-PPV) polymer light-emitting diodes (PLEDs) with thin, doped composition-graded (CG) amorphous silicon-carbide (a-SiC:H) carrier-injection layers have been investigated. The optoelectronic characteristics of MEH-PPV PLEDs have been improved by employing thin doped CG a-SiC:H films as carrier-injection layers and O2-plasma treatment on indium-tin-oxide (ITO) transparent electrode, as compared with previously reported ones having doped constant-optical-gap a-SiC:H carrier-injection layers. For PLEDs with an n-type a-SiC:H electron injection layer (EIL) only, the electroluminescence (EL) threshold voltage and brightness were improved from 7.3 V, 3162 cd/m2 to 6.3 V, 5829 cd/m2 (at a current density J = 0.6 A/cm2), respectively, by using the CG technique. The enhancement of EL performance of the CG technique was due to the increased electron injection efficiency resulting from a smoother barrier and reduced recombination of charge carriers at the EIL and MEH-PPV interface. Also, surface modification of the ITO transparent electrode by O2-plasma treatment was used to further improve the EL threshold voltage and brightness of this PLED to 5.1 V, 6250 cd/m2 (at a J = 0.6 A/cm2). Furthermore, by employing the CG n[p]-a-SiC:H film as EIL [hole injection layer (HIL)] and O2-plasma treatment on the ITO electrode, the brightness of PLEDs could be enhanced to 9350 cd/m2 (at a J = 0.3 A/cm2), as compared with the 6450 cd/m2 obtained from a previously reported PLED with a constant-optical-gap n-a-SiCGe:H EIL and p-a-Si:H HIL.
In addition, the effects of hydrogenation on optoelectronic properties of intrinsic amorphous carbon (i-a-C:H) thin-film-white light-emitting diodes (TFWLEDs) with CG carrier-injection layers and the improved optoelectronic properties of TFWLEDs by additionally CG intrinsic amorphous silicon germanium (i-a-SiGe:H) as the carrier-injection layer have been investigated. The TFWLEDs were fabricated with i-a-C:H film as the luminescent layer and CG intrinsic a-SiC:H (i-a-SiC:H) film as the carrier-injection layers. The demonstrated TFWLEDs could be operated under direct-current (dc) forward or reverse bias or sinusoidal alternating-current (ac) voltage. The hydrogenation process for the luminescent or CG carrier-injection layer has been investigated to greatly enhance the optoelectronic properties of the obtained TFWLEDs. For the hydrogenated TFWLEDs, the highest obtainable brightnesses were 813 and 507 cd/m2 at an injection current density of 0.6 A/cm2 and the lowest EL threshold voltages were 9.1 and 8.9 V, under dc forward and reverse biases, respectively. These enhanced optoelectronic properties were attributed to the passivation of dangling bonds and the forming of more H2-compensated amorphous film by the employed hydrogenation process. In addition, the electrical transport mechanisms of the TFWLEDs were studied. In the low applied-bias range, the ohmic current was the dominated one. In the high applied-bias range, a Poole-Frenkel emission current resulted from the field-assisted hopping along the traps in amorphous film was observed. Moreover, a significant red-shift in EL spectra has been observed while the applied ac frequencies were higher than 1 kHz and its origin has been attributed to the lower mobilities of charge carriers.
Furthermore, the optoelectronic characteristics of i-a-C:H TFWLEDs with CG i-a-SiC:H layers had been obviously improved with additionally incorporated CG i-a-SiGe:H (CG Ge) carrier-injection layers. The enhancement of EL performance with CG Ge carrier-injection layers was due to the increased carrier-injection efficiency and reduced contact resistance resulting from the lower barrier and partially formed polycrystalline Ge layer between the Al (electrode)/Ge interface.
關鍵字(中) ★ 組成梯度
★ 載子注入層
★ 高分子
★ 白光
★ 發光二極體
關鍵字(英) ★ light-emitting diodes
★ white
★ polymer
★ carrier-injection layer
★ composition-graded
論文目次 Abstract I
Contents Ⅴ
Figure Captions Ⅶ
Table Captions ⅩⅠ
Chapter 1. Introduction 1
Chapter 2. Optoelectronic Characteristics of MEH-PPV Polymer
LEDs with Thin, Doped Composition-Graded a-SiC:H
Carrier-Injection Layers 7
2-1 Device Fabrication and Measurement 7
2-2 Results and Discussion 10
2-3 Summary 16
Chapter 3. Effects of Hydrogenation on Optoelectronic Properties of a-C:H Thin-Film-White Light-Emitting Diodes with Composition-Graded Carrier-Injection Layers 18
3-1 Device Fabrication and Measurement 18
3-2 Results and Discussion 21
3-2-1 Effects of Hydrogenation Process 21
3-2-2 Electrical Transport Mechanisms 31
3-2-3 Frequency-Dependent EL Spectra 34
3-3 Summary 37
Chapter 4. Improvement of a-C:H Thin-Film-White Light-Emitting Diodes with Additionally Composition-Graded
Carrier-Injection Layers 38
4-1 Device Fabrication and Measurement 38
4-2 Results and Discussion 41
4-3 Summary 50
Chapter 5. Conclusion and Future Work 51
5-1 Conclusion 51
5-2 Future Work 52
References 53
Biography 58
Publication Lists 59
Appendix A. Suppressing Dark-Current with Alternated
i-a-Si:H/i-a-SiGe:H Grade Supperlattice-Like
Multilayers in Planar Si-Based MSM Photodetector 65
A-1 Introduction 65
A-2 Device Fabrication and Measurement 66
A-3 Results and Discussion 67
A-4 Conclusion 71
Appendix B. Electrical Characteristics of
Metal-Insulator-Semiconductor Capacitors with Multi-Stack Thermal-Agglomerating Ge Nanocrystals in SiO2/SiNx Dielectrics 73
B-1 Introduction 73
B-2 Device Fabrication and Measurement 74
B-3 Results and Discussion 76
B-4 Conclusion 85
參考文獻 [1] C. W. Tang and S. A. van Slyke, “Organic Electroluminescence Diodes,”
Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
[2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Machley, and R. H. Friend, “Light-Emitting Diodes Based on Conjugate Polymers,” Nature,
vol. 347, pp. 539-541, 1990.
[3] D. D. C. Bradley, A. R. Brown, P. L. Burn, R. H. Friend, A. B. Holmes, and A. Kraft, “Electro-Optic Properties of Precursor Route Poly(arylene vinylene) Polymers,” Electro. Prop. Poly., vol. 107, pp. 304-309, 1992.
[4] C. Z. Wu, “Organic Thin-Film Light-Emitting Diodes-Techniques and Application in Flat-Panel Display,” Electron. Infor., vol. 4, pp. 4-12, 1996.
[5] Y. Kijima, N. Asai, N. Kishii, and S. I. Tamura, “RGB Luminescence from Passive-Matrix Organic LEDs,” IEEE Trans. on Electron Devices, vol. 44, pp. 1222-1228, 1997.
[6] C. S. Lin, R. H. Yeh, C. P. Huang, and J. W. Hong. “Optoelectronic Characteristics of Polymer Light Emitting Diodes with Poly(2-methoxy-5-(2’ethyl-hexoxy)-1,4-phenylene-vinylene) and Hydrogenated Amorphous Silicon Alloy Heterointerfaces,” Appl. Phys. Lett., vol. 81, pp. 205-207, 2002.
[7] C. S. Lin, R. H. Yeh, F. J. Pai, and J. W. Hong, “Optoelectronic Characteristics of MEH-PPV Polymer LEDs with n-a-SiCGe:H and p-a-Si:H Carrier Injection Layers,” IEE Proc. Opto., vol. 149, pp. 193-196, 2002.
[8] H. Kroemer, “Quasi-Electric and Quasi-Magnetic Fields in Non-Uniform Semiconductors,” RCA Rev., vol. 18, pp. 332-342, 1957.
[9] L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, and P. J. Brock, “Temperature- and Field-Dependent Electron and Hole Mobility in Polymer Light-Emitting Diodes,” Appl. Phys. Lett., vol. 74, pp. 1132-1134, 1999.
[10] M. Strukelj, F. Papadimitrakopoulis, T. M. Miller, and L. J. Rothberg, “Design and Application of Electron-Transporting Organic Material,” Science, vol. 267, pp. 1969-1972, 1995.
[11] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High Performance Thin-Film Flip-Chip InGaN-GaN Light-Emitting Diodes,” Appl. Phys. Lett., vol. 89, pp. 071109-1-071109-3, 2006.
[12] J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from Ⅱ-Ⅵ Semiconductor Quantum Dot-Polymer Composites,” Adv. Mater., vol. 12, pp. 1102-1105, 2000.
[13] F. Hide, P. Kozodoy, S. P. DenBaars, and A. J. Heeger, “White Light from InGaN/Conjugated Polymer Hybrid Light-Emitting Diodes,” Appl. Phys. Lett., vol. 70, pp. 2664-2666, 1997.
[14] A. J. Pal, R. Osterbacka, K. M. Kallman, and H. Stubb, “High-Frequency Response of Polymeric Light-Emitting Diodes,” Appl. Phys. Lett., vol. 70, pp. 2022-2024, 1997.
[15] R. Myers and J. F. Wager, “Transferred Charge Analysis of Evaporated ZnS:Mn Alternating-Current Thin-Film Electroluminescent Devices,” J. Appl. Phys., vol. 81, pp. 506-510, 1997.
[16] R. H. Yeh, T. R. Yu, T. C. Chung, S. Y. Lo, and J. W. Hong, “Optoelectronic Characteristics of Direct-Current and Alternating-Current White Thin-Film Light-Emitting Diodes Based on Hydrogenated Amorphous Silicon Nitride Film,” IEEE Trans. on Electron Devices, vol. 55, pp. 978-985, 2008.
[17] B. S. Satyanarayana, A. Hart, W. I. Milne, and J. Robertson, “Field Emission From Tetrahedral Amorphous Carbon,” Appl. Phys. Lett., vol. 71, pp. 1430-1432, 1997.
[18] M. Koos, M. Veres, M. Fule, and I. Pocsik, “Ultraviolet Photoluminescence and Its Relation to Atomic Bonding Properties of Hydrogenated Amorphous Carbon,” Diamond Relat. Mater., vol. 11, pp. 53-58, 2002.
[19] J. V. Anguita, W. T. Young, R. U. Khan, S. R. P. Silva, S. Haq, I. Sturland, and A. Pritchard, “Photoluminescence in Low Defect Density a-C:H and a-C:H:N,”
J. Non-Cryst. Solids, vol. 266-269, pp. 821-824, 2000.
[20] S. B. Kim and J. F. Wager, “Electroluminescence in Diamond-Like Carbon Films,” Appl. Phys. Lett., vol. 53, pp. 1880-1881, 1988.
[21] A. Foulani and C. Laurent, “Wide-gap a-C:H Prepared by DC Glow Discharge of CH4: Photoluminescence and Electroluminescence in the Visible Region,” Mater. Chem. Phys., vol. 80, pp. 466-471, 2003.
[22] B. Faughnan and A. C. Ipri, “A Study of Hydrogen Passivation of Grain Boundaries in Polysilicon Thin Film Transistors,” IEEE Trans. on Electron Devices, vol. 30, pp. 101-107, 1989.
[23] I. W. Wu, A. G. Lewis, T. Y. Huang, and A. Chiang, “Effects of Trap-State Density Reduction by Plasma Hydrogenation in Low-Temperature Polysilicon TFT,” IEEE Electron Device Lett., vol. 10, pp. 123-125, 1989.
[24] S. Y. Lo, K. S. Fang, R. H. Yeh, and J. W. Hong, “Optoelectronics of MEH-PPV Polymer LEDs with Thin, Doped Composition-Graded a-SiC:H Carrier Injection Layers,” Solid-State Electron., vol. 50, pp. 1501-1505, 2006.
[25] Y. C. Her and C. W. Chen,” Crystallization Kinetics of Ultrathin Amorphous Si Film Induced by Al Metal Layer Under Thermal Annealing and Pulsed Laser irradiation,” J. Appl. Phys., vol. 101, pp. 043518-043521, 2007.
[26] F. Katsuki, K. Hanafusa, M. Yonemura, T. Koyama, and M. Doi, “Crystallization of Amorphous Germanium in an Al/a-Ge Bilayer Film Deposited on a SiO2 Substrate,” J. Appl. Phys., vol. 89, pp. 4643-4347, 2001.
[27] J. I. Pankove and D. E. Carlson, “Photoluminescence of Hydrogenated Amorphous Silicon,” Appl. Phys. Lett., vol. 31, pp. 450-451, 1977.
[28] Y. A. Chen, C. F. Chio, W. C. Tsay, L. H. Laih, J. W. Hong, and C. Y. Chang, “Optoelectronic Characteristics of a-SiC:H-Based P-I-N Thin-Film Light-Emitting Diodes with Low-Resistance and High-Reflectance N+-a-SiCGe:H Layer,” IEEE Trans. on Electron Devices, vol. 44, pp. 1360-1366, 1997.
[29] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface Modification of Indium Tin Oxide by Plasma Treatment: An Effective Method to Improve the Efficiency, Brightness, and Reliability of Organic Light Emitting Devices,” Appl. Phys. Lett., vol. 70, pp. 1348-1350, 1997.
[30] B. C. Lim, Y. J. Choi, J. H. Choi, and J. Jang, “Hydrogenated Amorphous
Silicon Thin Film Transistor Fabricated on Plasma Treated Silicon Nitride,”
IEEE Trans. on Electron Devices, vol. 47, pp. 367-371, 2000.
[31] M. A. Lampert and P. Mark, Current Injection in Solids. New York: Academic, 1970, chap. 2, 4, 5.
[32] J. G. Simmons, “Poole-Frenkel Effect and Schottky Effect in Metal-Insulators-Metal Systems,” Phys. Rev., vol. 155, pp. 657-660, 1967.
[33] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York: Wiley, 1981,
chap. 1, 5, 7.
[34] L. A. Romanko, A. G. Gontar, A. M. Kutsay, S. I. Khandozko, and V. Y. Gorokhov, “Dielectric Properties of RF Plasma-Deposited a-C:H and a-C:H:N Films,” Diamond Relat. Mater., vol. 9, pp. 801-804, 2000.
[35] E. Staryga and G. W. Bak, “Relation Between Physical Structure and Electrical Properties of Diamond-Like Carbon Thin Films,” Diamond Relat. Mater., vol. 14, pp. 23-34, 2005.
[36] I. Ay and H. Tolunay, “Steady-State and Transient Photoconductivity in Hydrogenated Amorphous Silicon Nitride Films,” Sol. Energy Mater. Sol. Cells, vol. 80, pp. 209-216, 2003.
[37] R. H. Yeh, T. R. Yu, S. Y. Lo, and J. W. Hong, “Alternating-Current White Thin-Film Light-Emitting Diodes Based on Hydrogenated Amorphous Carbon Layer,” IEEE Photonic Tech. Lett., vol. 18, pp. 2341-2343, 2006.
[38] S. W. Lee and S. K. Joo, “Low Temperature Poly-Si Thin-Film Transistor Fabrication by Metal-Induced Lateral Crystallization,” IEEE Electron Dev. Lett., vol. 17, pp. 160-162, 1996.
[39] A. Foulani, “Drift Mobility Measurement in a-C:H Films by Time-Resolved Electroluminescence,” Appl. Surf. Sci., vol. 202, pp. 206-210, 2002.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2009-11-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明