以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:33 、訪客IP:18.117.75.53
姓名 吳彥學(Yen-Hsueh Wu) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 應用於PCI Express Generation II之5-Gb/s 無電感式類比等化器的設計與實現
(Design and Implementation of 5-Gb/s Inductorless Analog Equalizer for PCI Express Generation II)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 近年來由於網路和處理器快速的發展,使得快速傳輸大量資料已成為傳輸系統的主要動機,因此傳統的平行匯流排逐漸的被高速串列傳輸系統所取代。但是,當系統的操作頻率在Gigahertz 等級時,高頻的資料經過通道之後會失真及衰減。因此本論文希望實現一個5-Gb/s無電感式類比等化器來補償通道的損失,並能應用於 PCI Express Generation II的系統中。
本論文提出的無電感式類比等化器可以補償PCI Express Generation II 在2.5-GHz時14-dB的通道損失。在Equalizing Filter的部分使用Low Voltage Zero Generator (LVZG),其沒有使用電感就能在高頻產生高增益。並且使用Spectrum-balancing Technique來移除掉Regulating Comparator。在Power Detector (POD)的部份結合Current Steering Technique和Pre-amplifier來增大振幅,因此能減輕Error Amplifier所需要的增益。本晶片以 TSMC 0.18-μm 1P6M CMOS 製程來實現,在工作電壓為 1.6-V時,其功率消耗為 17.6-mW(不含Output Buffer),當晶片包含 PAD 時,晶片總面積為 0.54-mm2,而核心部分的面積為 0.1-mm2(包含Output Buffer),輸出峰對峰(Peak-to-peak)的抖動量為0.28-UI。
摘要(英) In recent years, due to rapid development of network and processor, transmit a lot of data quickly becomes the main motivation of transmission system. Therefore, conventional parallel bus is replaced gradually by high-speed serial link transmission system. But, when the system operates at gigahertz level frequency, the data of high frequency component pass through the channel will distort and degrade. For this reason, this thesis hopes to realize a 5-Gb/s inductorless analog equalizer to compensate channel loss, and can be applied in PCI Express Generation II system.
This thesis proposes an inductorless analog equalizer that compensates for the PCI Express Generation II channel loss of 14-dB at 2.5-GHz. This equalizing filter uses low voltage zero generator (LVZG) to generate high-frequency gain boosting without using inductors. The spectrum-balancing technique eliminates the needing for regulating comparator. The power detector (POD) combines current steering technique and pre-amplifier circuit to enhance the voltage swing, therefore relax the gain requirement of error amplifier. The test chip is implemented in TSMC 0.18-μm 1P6M CMOS technology. It works at power supply 1.6-V with 17.6-mW (excluding the output buffer). The total chip area is 0.54-mm2 with pads, the core area is 0.1-mm2 (including output buffer), and output peak-to-peak jitter is 0.28-UI.
關鍵字(中) ★ 等化器
★ 無電感
★ 高速串列傳輸關鍵字(英) ★ equalizer
★ inductorless
★ high speed serial links論文目次 摘要 ....................................................................................................................... i
Abstract ................................................................................................................ ii
致謝 ..................................................................................................................... iii
目錄 ..................................................................................................................... iv
圖目錄 ................................................................................................................ vii
表目錄 .................................................................................................................. x
第1章 緒論 ......................................................................................................... 1
1.1 研究動機 ................................................................................................. 1
1.2 高速串列傳輸系統簡介 ........................................................................... 3
1.3 論文架構 ................................................................................................. 5
第2章 基本觀念與PCI Express系統簡介 ............................................................ 6
2.1 基本觀念 ................................................................................................. 6
2.1.1 隨機二位元資料的特性 ................................................................. 6
2.1.2 資料編排形式 ................................................................................ 7
2.1.3 頻寬對資料的影響 ........................................................................ 8
2.1.4 傳輸線理論 ................................................................................... 8
2.2 抖動分析 ............................................................................................... 16
2.2.1 隨機性抖動 ................................................................................. 16
2.2.2 定量性抖動 ................................................................................. 17
2.3 PCI Express系統簡介 ............................................................................ 18
2.3.1 PCI Express規格說明 .................................................................. 19
2.3.2 通道模型 ..................................................................................... 21
第3章 傳統的等化器電路架構 ........................................................................... 23 iv
3.1 等化器近幾年的發展 ............................................................................. 23
3.2 傳統的類比等化器電路架構 .................................................................. 24
3.2.1 傳統的類比適應性等化器電路架構 [13] ...................................... 24
3.2.2 增加低頻增益控制迴路的電路架構 [14] ...................................... 25
3.2.3 頻譜平衡技術的電路架構 [15] .................................................... 26
3.2.4 增加振幅控制迴路的電路架構 [16] ............................................. 27
3.2.5 結合時脈資料回復電路的電路架構 [17] ...................................... 28
3.3 傳統的高頻補償電路 ............................................................................. 29
3.3.1 源極退化的高頻補償電路 [14] .................................................... 29
3.3.2 電感式高頻補償電路 [15] ........................................................... 30
3.3.3 被動元件高頻補償電路 [16] ........................................................ 32
3.3.4 正回授的高頻補償電路 [17] ........................................................ 33
第4章 無電感式類比等化器的設計與實現 ......................................................... 34
4.1 類比等化器電路架構 ............................................................................. 34
4.2 類比等化器的組成元件 ......................................................................... 38
4.2.1 高頻補償電路 .............................................................................. 38
4.2.2 預先緩衝電路 .............................................................................. 41
4.2.3 輸出緩衝電路 .............................................................................. 42
4.2.4 低通濾波器和全通濾波器 ............................................................ 44
4.2.5 能量偵測電路 .............................................................................. 46
4.2.6 錯誤放大器 ................................................................................. 47
4.3 類比等化器的模擬結果 ......................................................................... 49
4.3.1 等化器在不同通道下的模擬結果 ................................................. 49
4.3.2 蒙地卡羅分析 .............................................................................. 55
第5章 佈局與量測 ............................................................................................ 57
5.1 等化器電路佈局 .................................................................................... 57 v
5.2 晶片量測 ............................................................................................... 58
第6章 結論 ....................................................................................................... 78
參考文獻 ............................................................................................................. 79
參考文獻 [1] B. Razavi, Design of Integrated Circuits for Optical Communications, New York: McGraw-Hill, 2002.
[2] A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8b/10b transmission code,” IBM J. Res. and Develop., vol. 27, pp. 440-451, Sept. 1983.
[3] S. H. Hall, G. W. Hall, and J. A. McCall, High-speed digital system design— A handbook of interconnect theory and design practices, John-Wiley, 1st ed., 2002.
[4] J. Hancock, “Jitter-Understanding it, measuring it, eliminating it; part 3: causes of jitter,” High Frequency Electronics, Jun. 2004, pp. 28-34.
[5] B. Ravi, A. Don, and S. Tom, PCI Express System Architecture, MindShare, Inc., 2004.
[6] C.-H. Chu, “RL equalizer design for compensation of lossy transmission line,” M.S. thesis, Dept. Elect. Eng. National Taiwan Univ., Taipei, Taiwan, 2007.
[7] PCI ExpressTM Base Specification, Gen2 Rev 2.1, Mar. 4, 2009.
[8] A. Fiedler, R. Mactaggart, J. Welch, and S. Krishnan, “A 1.0625-Gb/s transceiver with 2x-oversampling and transmit signal pre-emphasis,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1997, pp. 238-239.
[9] R. Farjad-Rad, C.-K. K. Yang, M. A. Horowitz, and T. H. Lee, “A 0.4-µm CMOS 10-Gb/s 4-PAM pre-emphasis serial link transmitter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 580-585, May. 1999.
[10] R. Farjad-Rad, C.-K. K. Yang, M. A. Horowitz, and T. H. Lee, “A 0.3-µm CMOS 8-Gb/s 4-PAM serial link transceiver,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 757-764, May. 2000.
[11] K. Gotoh, H. Tamura, H. Takauchi, T. S. Cheung, W. Gai, Y. Koyanagi, R. Schober, R. Sastry, and F. Chen, “A 2B parallel 1.25-Gb/s interconnect I/O interface with self-configurable link and plesiochronous clocking,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1999, pp. 180-181.
[12] J.-Y. Sim, Y.-S. Sohn, H.-J. Park, C.-H. Kim, and S.-I. Cho, “840-Mb/s CMOS demultiplexed equalizing transceiver for DRAM-to-processor communication,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 1999, pp. 23-24.
[13] J. N. Babanezhad, “A 3.3-V analog adaptive line-equalizer for fast Ethernet data communication,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), May. 1998, pp. 343-346.
[14] J.-S. Choi, M.-S. Hwang, and D.-K. Jeong, “A 0.18-µm CMOS 3.5-Gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 419-425, Mar. 2004.
[15] J. Lee, “A 20-Gb/s adaptive equalizer in 0.13-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2058-2066, Sep. 2006.
[16] S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1999-2011, Sep. 2007.
[17] C.-F. Liao and S.-I. Liu, “A 40-Gb/s CMOS serial-link receiver with adaptive equalization and clock/data recovery,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2492-2502, Nov. 2008.
[18] J.-H. Lu, K.-H. Chen, and S.-I. Liu, “A 10-Gb/s inductorless CMOS analog equalizer with an interleaved active feedback topology,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 97-101, Feb. 2009.
[19] H. Liu, I. Mohammed, Y. Fan, M. Morgan, and J. Liu, “An HDMI cable equalizer with self-generated energy ratio adaptation scheme,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 7, pp. 595-599, Jul. 2009.
[20] A. J. Baker, “An adaptive cable equalizer for serial digital video rates to 400-Mb/s,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1996, pp. 174-175.
[21] Y. Tomita, M. Kibune, J. Ogawa, W. W. Walker, H. Tamura, and T. Kuroda, “A 10-Gb/s receiver with series equalizer and on-chip ISI monitor in 0.11-µm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 986-993, Apr. 2005.
[22] G. P. Hartman, K. W. Martin, and A. McLaren, “Continuous-time adaptive-analog coaxial cable equalizer in 0.5-µm CMOS,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), May. 1999, pp. 97-100.
[23] G. E. Zhang and M. M. Green, “A 10-Gb/s BiCMOS adaptive cable equalizer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2132-2140, Nov. 2005.
[24] R. Sun, J. Park, F. O’Mahony, and C. P. Yue, “A tunable passive filter for low-power high-speed equalizers,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2006, pp. 198-199.
[25] J. Kim, J. Yang, S. Byun, H. Jun, J. Park, C. S. G. Conroy, and B. Kim, “A four-channel 3.125-Gb/s CMOS serial-link transceiver with a mixed-mode adaptive equalizer,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 462-471, Feb. 2005.
[26] Y. Kudoh, M. Fukaishi, and M. Mizuno, “A 0.13-µm CMOS 5-Gb/s 10-m 28AWG cable transceiver with no-feedback-loop continuous-time post-equalizer,” IEEE J. Solid-State Circuits, vol. 38 , no. 5, pp. 741-746, May. 2003.
[27] A. A. Fayed and M. Ismail, “A low-voltage low-power CMOS analog adaptive equalizer for UTP-5 cables,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 2, pp. 480-495, Mar. 2008.
[28] D. A. Johns and D. Essig, “Integrated circuits for data transmission over twisted-pair channels,” IEEE J. Solid-State Circuits, vol. 32, no. 3, pp. 398-406, Mar. 1997.
[29] E. Sackinger and W. C. Fischer, “A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 receivers,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1884-1888, Dec. 2000.
[30] S. Gondi, J. Lee, D. Takeuchi, and B. Razavi, “A 10-Gb/s CMOS adaptive equalizer for backplane applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005, pp. 328-329.
[31] M. H. Shakiba, “A 2.5-Gb/s adaptive cable equalizer,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1999, pp. 396-397.
[32] R. Sun, “A low-power 20-Gb/s continuous-time adaptive passive equalizer,” M.S. thesis, Dept. Elect. Eng. Carnegie Mellon Univ., Pittsburgh, Pennsylvania, 2005.
[33] D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York: Wiley, 1997.
[34] 蕭培墉、吳孟賢,2005,HSpice積體電路設計分析與模擬導論,初版,台北市,東華書局。
[35] HSPICE User Guide: Simulation and Analysis, Ver. C-2009.03, Mar., 2009.
[36] Y.-F. Lin, PCIe Gen.2 Physical Layer Analog Front End, Mar., 2007.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2009-12-13 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare