博碩士論文 965201039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.128.200.165
姓名 陳柏寧(Po-ning Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於Ka/V頻段低功率消耗及高線性度射頻前端接收機電路之研製
(The Implementations of Low Power Consumption and High Linearity RF Front-End Receiving Circuits for Ka/V-Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文係以TSMC 0.18 μm 與TSMC 0.13 μm CMOS製程,研製應用於Ka頻段與V頻段射頻接收機前端電路。主要設計電路包含低雜訊放大器與雙平衡混頻器。
低雜訊放大器部分,使用三級共源級放大器串接式架構來實現,第一級共源級放大器主要提供雜訊匹配以降低整體電路的雜訊指數,二三級則是利用電流密度來分析在雜訊與增益間取得平衡點。傳輸線是採用結合共平面波導與微帶線優點的最底層金屬當作地平面的共平面波導。此放大器量測增益在54.4 GHz有12.2 dB,雜訊指數4.7 dB,3-dB頻寬8.3 GHz,功率消耗8.8 mW,晶片面積0.35〖 mm〗^2。第二個高線性低雜訊放大器一樣採用三級共源級放大器串接實現,與前一個低雜訊放大器不同點是將第一級的偏壓在電流密度的雜訊最低點,藉此可得到較佳的雜訊指數,並且在第三級加入抑制三階非線性項的機制,可使得電路整體線性度提升,此電路的量測結果為增益在54.8 GHz有10.7 dB,雜訊指數3.7 dB,3-dB頻寬為9.7 GHz,在高線性的偏壓狀態僅消耗6.8 mW,晶片面積0.35 mm^2。
雙平衡混頻器部分,首先應用在V頻帶的混頻器,電路中包含在LO端使用的堆疊式馬遜平衡器,比起變壓器能有較寬的頻寬,而且單轉雙可使得量測更為方便。混頻器本身則採用基極驅動而非傳統閘極驅動,此混頻器的工作電流很小,因此有優異的功率消耗,量測結果在64 GHz有3 dB的轉換損耗,輸入1-dB壓縮點為-5 dBm,輸入三階交互調變交叉點為5 dBm,混頻器本身僅需0.64 mW,晶片面積0.55〖 mm〗^2。Ka頻帶分別有傳統電流注入吉爾伯特混頻器與兩個基極驅動混頻器,傳統的吉爾伯特因為有電流注入的機制,可以在不影響整體增益下縮小由本地震盪控制的開關電晶體大小,因為藉此提升開關的切換速度與降低熱雜訊的注入,在轉導級與開關中間加入並聯電感共振寄生電容以提高電晶體操作頻率進而提高增益,量測結果在26 GHz有8.745 dB的轉換增益,輸入1-dB壓縮點為-16 dBm,輸入三階交互調變交叉點為-2 dBm,功率消耗18.46 mW,晶片面積0.61〖 mm〗^2。Ka頻帶的基極驅動混頻器,LO端一樣使用的堆疊式馬遜平衡器,量測結果在28.7 GHz有8.088 dB的轉換增益,輸入1-dB壓縮點為-14 dBm,輸入三階交互調變交叉點為-5 dBm,混頻器本身僅需0.31 mW,晶片面積0.828 mm^2。最後混頻器核心一樣是基極驅動,與上一個電路的差別在於在射頻端加入了前級放大器,此前級放大器採用共源級放大器以增加整體增益與降低整體的雜訊指數,電路中LO亦端使用的堆疊式馬遜平衡器單轉雙,量測結果在27 GHz有12.43 dB的轉換增益,輸入1-dB壓縮點為-17 dBm,輸入三階交互調變交叉點為-8.6 dBm,混頻器本身包含前級共源級放大器僅需2.5 mW,晶片面積0.82〖 mm〗^2。
摘要(英) The thesis presents RF front-end circuits for Ka/V-band receiver, the circuits are both implemented on TSMC 0.18 μm and TSMC 0.13 μm CMOS technologies. The implemented circuits include two V-band low noise amplifiers, a V-band doubly balanced mixer, and three Ka-band doubly balanced mixers.
The LNAs include three cascade common source (CS) stages. In the two LNAs, the current density is used to decide transistor size and bias condition. The first stage of LNA is biased for the minimal noise figure (〖NF〗_min). The other stages are biased for the trade-off between the gain and NF. The grounded coplanar waveguide (GCPW) transmission line is used to shield the electrical and magnetic field from penetrating the substrate. The GCPW line has both advantages of microstrip line and coplanar wave-guide (CPW). LNA1 achieves a measured peak power gain of 12.2 dB at 54.4 GHz and only consumes a DC power of 8.8 mW. The measured NF of the LNA is 4.7 dB at 61 GHz, and 3-dB bandwidth is about 8.3 GHz. The chip size is only 0.35 mm^2. LNA2 is highly linear LNA. For the lowest 〖NF〗_min, the first stage of LNA2 is biased at current density of the lowest 〖NF〗_min. The other stages are biased at current density of the trade-off between gain and NF. The third stage CS amplifier with a third-order transconductance (g_m3) cancellation cell operates in parallel to compensate negative g_m3 value, and then it can enhance the linearity of LNA. The designed LNA achieves a measured peak power gain of 10.7 dB at 54.8 GHz. The measured NF of the LNA is 3.7 dB at 61 GHz. When g_m3 cancellation cell is biased at negative bulk-to-source voltage, the linearity of LNA would be better than 2 dBm and the power consumption is only 6.8 mW. The 3-dB bandwidth is about 9.7 GHz. The chip size is 0.35 mm^2.
The V band mixer includes an LO stacked Marchand balun, and bandwidth of the balun is larger than transformer. Since RF and LO are single in, the measurement is simpler than fully differential one. The mixer core adopted a bulk-driven topology. Since the mixer core draw very few current, the mixer has very low power consumption. The designed mixer achieves a measured conversion gain of -3 dB at 64 GHz, and it consumes 0.644 mW. The input 1-dB compression point (IP1dB) is -5 dBm, and the input third-order intercept point (IIP3) is 5 dBm at 64 GHz. The chip size is 0.55 mm^2.
The three Ka-band mixers are Gilbert cell mixer with current bleeding, bulk-driven mixer, and bulk-driven mixer. The traditional Gilbert cell mixer (Mixer A) with current bleeding technique can improve mixer noise and maintain the conversion gain. Furthermore, the inductors are added parallel between the switching stage, RF stage, and current bleeding to resonate out the total capacitance looking into the drain of RF stage to enhance conversion gain. The mixer achieves a measured conversion gain of 8.745 dB at 26 GHz, and it consumes 18.46 mW. The input 1-dB compression point is -16 dBm, and the IIP3 is -2 dBm at 26 GHz. The chip size is 0.65 mm^2. Mixer B is a bulk-driven mixer, it also includes an LO stacked Marchand balun. The peak conversion gain is 8.088 dB at RF frequency 28.7 GHz, and only needs very low power consumption of 0.3136 mW. The input 1-dB compression point is -14 dBm, and theIIP3 is -5 dBm at 28.7 GHz. The chip size is 0.828 mm^2. Final, mixer C compared to mixer A is added a common source in front of the mixer for the higher conversion gain and lower NF. It also includes an LO stacked Marchand balun. The peak conversion gain is 12.43 dB at RF frequency of 27 GHz, and only need very low power consumption of 2.505 mW. The input 1-dB compression point of -17 dBm, and the IIP3 is -8.6 dBm at 27 GHz. The chip size is 0.82 mm^2.
關鍵字(中) ★ 低功率消耗
★ 高線性度
★ 接收機
關鍵字(英) ★ high linearity
★ low power consumption
論文目次 Table of Contents
Chinese Abstract I
Abstract III
Acknowledgement VI
Table of Contents VIII
List of Figures XI
List of Tables XVII
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Thesis Organization 2
Chapter 2 Basic Concepts of RF Design 3
2-1 Introduction 3
2-2 S-parameter 3
2-3 Effects of Nonlinearity 6
2-3-1 Third Intercept Point (IP3) 8
2-3-2 Gain Compression 9
2-4 Noise Figure 12
2-4-1 Thermal Noise 13
2-4-2 Shot Noise 14
2-4-3 Flicker Noise 16
2-5 Sensitivity 17
2-6 Stability 18
Chapter 3 Low Noise Amplifier 22
3-1 Introduction 22
3-2 Friis equation 24
3-3 Noise in MOSFET 24
3-4 V-band GCPW Low Power Consumption LNA 26
3-4-1 Circuit Topology 26
3-4-2 Simulation and Measurement Results 31
3-4-3 Summary 37
3-5 gm3 Cancellation Technique to Enhance the Linearity of V-band GCPW
LNA 38
3-5-1 Circuit Topology 38
3-5-2 Simulation and Measurement Results 41
3-5-3 Summary 47
Chapter 4 Mixer 49
4-1 Introduction 49
4-2 Important Parameters of Mixer 50
4-3 V-band Low Power Consumption Bulk Driven Double Balanced Down
Mixer 51
4-3-1 Circuit Topology 51
4-3-2 Simulation and Measurement Results 58
4-3-3 Summary 64
4-4 Ka-band Gilbert Cell Down-conversion Mixer with Current Bleeding Technique 64
4-4-1 Circuit Topology 64
4-4-2 Simulation and Measurement Results 66
4-4-3 Summary 73
4-5 Ka-band Low Power Bulk Driven Double Balanced Down Conversion
Mixer 73
4-5-1 Circuit Topology 73
4-5-2 Simulation and Measurement Results 76
4-5-3 Summary 86
4-6 Low Power and High Gain Common Source Transformer Coupling Bulk Driven Double Balanced Mixer 86
4-6-1 Circuit Topology 86
4-6-2 Simulation and Measurement Results 88
4-6-3 Summary 98
Chapter 5 Conclusion 100
References 102
參考文獻 [1] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Broadersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40 no. 1, pp. 144-155, Jan. 2005.
[2] C.-M. Lo, C.-S. Lin, and H. Wang, “A miniature V-band 3-stage cascade LNA in 0.13-?m CMOS,” in IEEE Int. Solid-State Circuit conf. Tech. Dig., pp. 21-23, Feb. 2006
[3] C.-Y. Wu, P.-H. Chen, ”A Low Power V-band low noise amplifier using 0.13-?m CMOS technology,” ICECS 2007. Dec. 2007, pp.1328 – 1331.
[4] J.-W. Huang, C.-S. Wang, C.-K. Wang, and S.-H. Yeh, “Vertical-ground-plane transmission lines for miniaturized silicon-based MMICs,” in Proc. IEEE Rad. Freq. Integr. Circuits (RFIC) Symp., Jun. 2007 pp. 563 – 566.
[5] T.-P. Wang, H. Wang, “A Broadband 42-63-GHz Amplifier Using 0.13-um CMOS Technology,” in IEEE/MTT-S Int. Dig., Honolulu, HI, Jun. 2007, pp. 1779 – 1782.
[6] B. Heydari, M. Bohsali, E. Adabi, A. M. Niknejad, “Low-power mm-wave components up to 104 GHz in 90 nm CMOS,” IEEE Int. Solid-State Circuit Conf. Tech. Dig., pp. 597, Jan. 2007
[7] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PA for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[8] S. Pellerano, Y. Palaskas, and K. Soumyanath, “A 64 GHz LNA with 15.5 dB gain and 6.5 dB NF in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp.1542–1552, Jul. 2008.
[9] E. Cohen, S. Ravid, and D. Ritter, “An ultra low power LNA with 15dB gain and 4.4 dB NF in 90 nm CMOS process for 60 GHz phase array radio,” in Proc. Rad. Rad. Freq. Integr. Circuits (RFIC) Symp., Jun. 2008, pp.61 - 64
[10] C. Weyers, P. Mayr, J. W. Kunze, and U. Langmann, “A 22.3 dB voltage gain 6.1 dB NF 60 GHz LNA in 65 nm CMOS with differential output,” IEEE Int. Solid-State Circuit Conf Tech. Dig., pp. 192, Feb. 2008.
[11] B.-J. Huang, C.-H. Wang, C.-C. Chen, M.-F. Lei, P.-C. Huang, K. Y. Lin, and H. Wang, “Design and analysis for a 60 GHz low noise amplifier with RF ESD protection,” IEEE Trans. Microw. Theory Tech., vol.57, no.2, pp. 298-305, Feb. 2009.
[12] K.-H. Liang, C.-H. Lin, H.-Y. Chang, and Y.-J. Chan, “A new linearization technique for CMOS RF mixer using third-order transconductance cancellation,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 350–352, Jun. 2008.
[13] Lam, J.: ‘1.2 V CMOS down conversion mixer and VCO design for RF front-end transceiver applications’. MSc thesis, McMaster University, Canada, 2003.
[14] J.-H. Tsai, and T.-W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless Gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp. 2075-2085, Oct. 2007.
[15] C.-S. Lin, P.-S. Wu, H.-Y. Chang, and H. Wang, “A 9–50-GHz Gilbert-cell down-conversion mixer in 0.13-?m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293-295, May 2006.
[16] C.-L. Kuo, B.-J. Huang, C.-C. Kuo, K.-Y. Lin, and H. Wang, “ A 10–35 GHz low power bulk-driven mixer using 0.13 ?m CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 455-457, Jul. 2008.
[17] F.-R. Shahroury, and C.-Y. Wu, “The design of low LO-power 60-GHz CMOS quadrature-balanced self-switching current-mode mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10,pp. 692-694, Oct. 2008.
[18] S. Emami, C. Doan, A. Niknejad, and R. Brodersen, “A 60-GHz downconverting CMOS single-gate mixer,” in Proc. IEEE Radio Frequency Integrated Circuits, CA, pp. 163–166, Jun. 2005.
[19] B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. Solid-State Circuits, vol. 41, no. 1, Jul. 2006, pp.17–22.
[20] Ellinger, F, “26-34 GHz CMOS mixer,” Electron. Lett., vol. 40, no. 22, pp.1417 – 1419, Oct. 2004.
[21] Verma, A., Li Gao, O, K.K., and Lin, J., “A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13 ?m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 8, pp. 493 – 495, Aug. 2005.
[22] Ellinger, F., Rodoni, L.C., Sialm, G., Kromer, C., von Buren, G., Schmatz, M.L., Menolfi, C., Toifl, T., Morf, T., Kossel, M.,and Jackel, H., “30-40 GHz drain pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 52, no. 5, pp.1382 – 1391, May 2004.
[23] C. Viallon , J. Graffeuil, and T. Parra, “High performance K-band active mixer using BiCMOS SiGe process,” Electron. Lett., vol. 41, no. 3, pp. 134 – 135, Feb. 2005.
[24] C.-L. Kuo, B.-J. Huang, C.-C. Kuo, K.-Y. Lin, and H. Wang, “A 10–35 GHz low power bulk-driven mixer using 0.13 ?m CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 455 – 457, Jul. 2008.
[25] D. Ahn, D.-W. Kim, and S. Hong, “A K-band high-gain down-conversion mixer in 0.18 ?m CMOS technology,” IEEE Microw. Wireless Compon. Lett., Vol. 19, no. 4, pp. 227 – 229, Apr. 2009.
[26] A. Verma, K. K. O, and J. Lin, “A low-power up-conversion CMOS mixer for 22-29 GHz ultra-wideband applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3295–3300, Aug. 2006.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2010-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明