博碩士論文 965201036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.117.229.180
姓名 張毓玲(Yu-Ling Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用電流級距控制器以達到寬操作頻率範圍之數位式鎖相迴路
(A Digital PLL Using Current-Step Controller for Wide Operating Range Application)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出具寬操作頻率範圍之數位式鎖相迴路,其架構採用數位迴路濾波器取代由電阻及電容所組成之被動濾波器,以達到降低面積之效果;同時利用降低數位迴路濾波器取樣頻率之方法,使其在輸入參考頻率與除頻器之除數同時變動時,鎖相迴路系統皆為穩定操作。其中,使用所提出的具有電流級距控制器之數位至電流轉換器,除了使數位控制振盪器之轉換增益較為線性外,同時也可提高其頻率調控之解析度,達成低時脈抖動之設計。
此數位式鎖相迴路採用台積電 0.18 um 1P6M CMOS製程實現,並經由量測驗證其操作頻率範圍可達到200 MHz至1.4 GHz,且在操作頻率為800 MHz時,其峰對峰時脈抖動量(peak-to-peak jitter)為4.6%。其在供應電壓為1.8 V且輸出時脈為1 GHz之操作下消耗功率為7.27 mW,核心面積為0.04 mm2。此數位式鎖相迴路在與相同輸出頻率的倍頻範圍條件相比下,所耗費之面積極小,因此極為適合於系統晶片之應用。
摘要(英) In this thesis, a digital phase-locked loop (DPLL) with the wide operating range is presented. The architecture of the proposed DPLL uses a digital loop filter to replace passive loop filter for area saving purpose. The DPLL maintains the system stability by reducing the sampling frequency when the reference clock and the multiplication factor are varied. The linearity of the gain and timing resolution of digital-controlled oscillator are improved by using the proposed digital-to-current converter with current-step controller (CSC). Thus, the CSC used here can enhance the jitter performance.
The proposed DPLL is implemented in a 0.18-um TSMC 1P6M CMOS process. It can operate from 200 MHz to 1.4 GHz and has a 4.6% peak-to-peak jitter at 800 MHz. The power consumption and the core area are 7.27 mW at 1 GHz and 0.04 mm2, respectively. In this work, the proposed DPLL can obtain the small area cost under the same multiplication range. Therefore, it is useful for system on chip (SoC) systems.
關鍵字(中) ★ 可調變除數之除頻器
★ 寬操作頻率範圍
★ 數位迴路濾波器
★ 電流級距控制器
★ 數位至電流轉換器
★ 頻率合成器
★ 鎖相迴路
★ 時間至數位碼轉換器
關鍵字(英) ★ programmable divider
★ wide operating frequency range
★ digital loop filter
★ digital-to-current converter
★ current-step controller
★ time-to-digital converter
★ phase-locked loop (PLL)
★ Frequency synthesizers
論文目次 圖目錄 vi
表目錄 ix
第1章 導論 1
1.1 鎖相迴路之應用 1
1.2 研究動機 2
1.3 論文組織 3
第2章 鎖相迴路先前技術探討 4
2.1 鎖相迴路種類簡介 4
2.1.1 線性式鎖相迴路 4
2.1.2 數位式鎖相迴路 5
2.1.3 全數位式鎖相迴路 5
2.2 可攜式之全數位式鎖相迴路 [6] 6
2.3 動態串聯頻率計數迴路之全數位式鎖相迴路 [7] 8
2.4 自我偏壓之高除數之數位式鎖相迴路 [8] 9
2.5 具動態快速追鎖頻率漂動之數位式鎖相迴路 [9] 11
第3章 鎖相迴路系統分析 14
3.1 數位式鎖相迴路分析 14
3.2 全數位式鎖相迴路分析 17
3.3 MATLAB之模擬與探討 22
第4章 數位式鎖相迴路實現 27
4.1 電路架構 27
4.2 具有電流級距控制器之數位至電流轉換器 28
4.3 電流控制振盪器 31
4.4 時間至數位碼轉換器 33
4.5 數位迴路濾波器 37
4.6 相位頻率偵測器 39
4.7 可調變除數之除頻器 41
4.8 鎖相迴路模擬結果 43
第5章 晶片佈局與測試考量 44
5.1 晶片佈局考量 44
5.2 晶片佈局後模擬 47
5.2.1 晶片佈局後模擬結果 47
5.3 晶片測試考量 54
5.4 量測結果 57
第6章 總結與未來展望 63
6.1 總結 63
6.2 未來研究方向 64
參考文獻 65
參考文獻 [1] C. -Y. Yang, ”Phase-Locked Loops,” National Chung-Hsing University.
[2] DESIGN & REUSE:Catalyst of Collaborative IP Based SoC Design. Available:http://www.design-reuse.com/
[3] Network Dictionary. Available:http://www.networkdictionary.cn/hardware/soc.php
[4] B. Razavi, “Design of Analog CMOS Integrated Circuit,” New York:McGraw-Hill, 2001.
[5] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls, ”An All-Digital Phase-Locked Loop with 50-Cycle Lock Time Suitable for High-Performance microprocessors,” IEEE J. Solid-State Circuits, vol. 31, no. 30, pp. 412-422, Apr. 1995.
[6] C. -C. Chung, and C. -Y. Lee, “An All-Digital Phase-Locked Loop for High-Speed Clock Generation," IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 347-351, Feb. 2003.
[7] P. -L. Chen, C. -C. Chung, J. -N. Yang, and C. -Y. Lee, “A Clock Generator With Cascaded Dynamic Frequency Counting Loops for Wide Multiplication Range Applications,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1275-1285, Jun. 2006.
[8] J. G. Maneatis, J. Kim, I. McClatchie, J. Maxey, and M. Shankarads, “Self-Biased High-Bandwidth Low-Jitter 1-to-4096 Multiplier Clock Generator PLL,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1795-1803, Nov. 2003.
[9] V. Kratyuk, P. K. Hanumolu, K. Mayaram, and U. -K. Moon, ”A 0.6GHz to 2GHz Digital PLL with Wide Tracking Range,” IEEE Custom Integrated Circuits Conference, 2007, pp. 305-308.
[10] J. A. Tierno, A. V. Rylyakov, and D. J. Friedman , “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008.
[11] P. K. Hanumolu, M. Brownlee, K. Mayaram, and U. -K. Moon, “Analysis of Charge-Pump Phase-Locked Loops," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 9, pp. 1665-1674, Sep. 2004.
[12] K. Lim, C. -H. Park, D. -S. Kim, and B. Kim, “A Low-Noise Phase-Locked Loop Design by Loop Bandwidth Optimization,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 807-815, Jun. 2000.
[13] J. Hein, and J. W. Scott, “Z-domain Model for Discrete-Time PLL's," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 35, no. 11, pp. 1393-1400, Nov. 1988.
[14] A. Spalvieri, and M. Magarini, “Wiener’s Analysis of the Discrete-Time Phase-Locked Loop With Loop Delay,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no.6, Jun. 2008.
[15] N. D. Dalt, “A Design-Oriented Study of the Nonlinear Dynamics of Digital Bang-Bang PLLs," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 1, pp. 21-31, Jan. 2005.
[16] R. B. Staszewski and P. T. Balsara, “Phase-domain all-digital phase-locked loop," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 3, pp. 159-163, Mar. 2005.
[17] V. Kratyuk, P. K. Hanumolu, U. -K. Moon, and K. Mayaram, “A Design Procedure for All-Digital Phase-Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 3, pp. 247-251, Mar. 2007.
[18] S. Haykin, and B. V. Veen, ”Signals and Systems,” Wiley, 2003.
[19] D. R. Stephens, “Phase-Locked Loops for Wireless Communications: Digital, Analog and Optical Implementations,” Kluwer Academic Publishers, 2002.
[20] J. G. Maneatis and M. A. Horowitz, “Precise Delay Generation Using Coupled Oscillators,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1273-1282, Dec. 1993.
[21] E. RZiisiinen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “A Low-Power CMOS Time-to-Digital Converter," IEEE J. Solid-State Circuits, vol. 30, no. 9, pp. 984-990, Sep. 1995.
[22] P. Dudek, S. Szczepan’ski, and V. Hatfield, “A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line," IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 240-247, Feb. 2000.
[23] M. Lee, and A. Abidi, “A 9b, 1.25 ps Resolution Coarse-Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 769-777, Apr. 2008.
[24] B. Nikolic, V. G. Oklobdzija, V. Stajanovic, W. Jia, and et al., "Improved Sense-Amplifier Based Flip-Flop : Design and Measurements," IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 876-883, Jun. 2000.
[25] H. -Y. Huang , J. -C. Liu, and K. -H. Cheng, “All digital PLL using Pulse-Based DCO”, IEEE International Conference on Electronics, Circuits and Systems, Dec. 2007, pp. 1268-1271.
[26] S. Kim, K. Lee, Y. Moon, D. -K. Jeong, and et al., “A 960-Mb/s/pin Interface for Skew-Tolerant Bus Using Low Jitter PLL,” IEEE J. Solid-State Circuit, vol. 32, no. 5, pp. 691-700, May. 1997.
[27] H. -H. Chang and J.-C. Wu, “A 723-MHz 17.2mw CMOS Programmable Counter,” IEEE J. Solid-State Circuits, vol. 33, no. 10, pp.1572-1575, Oct. 1998.
[28] K. -H. Choi, J. -B. Shin, J. -Y. Sim, and H. -J Park, ”An Interpolating Digitally-Controlled Oscillator for a Wide-Range All-Digital PLL”, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 2055-2063, Sep. 2009.
[29] Z. Cao, Y. Li, and S. Yan, “A 0.4 ps-RMS-Jitter 1-3 GHz Ring-Oscillator PLL Using Phase-Noise Preamplification,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 876-883, Sep. 2008.
[30] M. Brownlee, P. K. Hanumolu, K. Mayaram, and U.-K. Moon, “A 0.5 to 2.5GHz PLL with Fully Differential Supply-Regulated Tuning” IEEE SSCC, Dig. Tech. Papers, pp. 588-589, Feb. 2006.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2010-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明