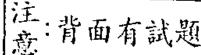
國立中央大學八十七學年度轉學生入學試題卷


化學系 三年級 科目: 分析化學 共 2 頁 第 / 頁

- 10 1. Which of the following statements are false: 水级域
 - (a) voltammetry is based upon the measurement of a current that develops under complete concentration polarization.
 - (b) Voltammety differs from electrogravimetry and coulometry in that with the latter ones the concentration polarization is kept at minimum.
 - (c)In voltammety a large consumption of analyte results in the end.
 - (d)In electrogravimetry essentially all of the analyte is converted to another state.
 - (e)In potentiometry's large current flow through the voltmeter.
- 10 2. The difference between amperometric titration and coulometric titration: 液块没
 - (a)Coulometric titrations carried out with a constant-current source are called amperostatic titrations.
 - (b) The amperometric titration needs indicators or potentiometry to indicate the end-point.
 - (c)In amperometric titrations the cell is seriously polarized; whereas in coulometric titrations the polarization is sometimes circumvented by adding auxiliary agent, such as in the determination of Fe⁺² concentration by adding Ce⁺⁴ in excess.
 - (d) The current efficiency of coulometric titrations does not need to be 100%, as long as it is constant throughout the titration.
 - (e)Both titration methods are based upon redox reactions.
 - 3. Draw a voltammogram for a mixture of cations A, B, and C with concentration ratio of 1:2 3, and the E_{1/2} for A, B, and C are 0.2V, -0.4V, and -1.2V, respectively.
 - 4. Calculate in initial potential needed for a current of 0.078 A in the cell, if the cell resistance is 5.00Ω. (ECo°=-0.277V; EZn°=-0.763V)

$$Co | Co^{2+} (6.40 \times 10^{-2} M) | | Zn^{2+} (3.75 \times 10^{-3} M) | Zn$$

- 20 5. Define the following terms:
 - (a) coordination number
 - (b)chelating agent

國立中央大學八十七學年度轉學生入學試題卷

科目: 分析化學 共之頁 第2頁

- (c)zwitterion
- (d)buffer capacity
- 6. Calculate the hydronium ion concentration of a buffer that is 0.0500 M in 10 KHP and 0.150M in K_2P . $K_{a1}=1.12 \times 10^{-3}$; $K_{a2}=3.91 \times 10^{-8}$.
- 15 7. Generalize an equation for calculating an equilibrium constant from standard potentials, assuming the two half reactions are:

$$A_{ox} + ae^{-} \rightleftharpoons A_{red}$$

 $B_{ox} + be^{-} \rightleftharpoons B_{red}$

8. Students measured the concentration of HCl in a solution by titrations 10 using different indicators to find the end-point. Is the difference between indicators 1 and 2 significant at the 95% confidence level?

> Bromothymol blue 0.09565 ± 0.00225 (M) 5 measurements Methyl red 0.08686 ± 0.00098 (M) 6 measurements

Values of I for Various Levels of Probability

Degrees of Freedom	Factor for Confidence Interval								
	80%	90%	95%	99%	99,9%				
1	3.08	6.31	12.7	63.7	637				
2	1.89	2.92	4.30	9.92	31.6				
3	1.64	2.35	3.18	5.84	12.9				
4	1.53	2.13	2.78	4.60	8.60				
5	1.48	2.02	2.57	4.03	6.86				
6	1.44	1.94	2.45	3.71	5.96				
7	1.42	1.90	2.36	3.50	5.40				
8	1.40	1.86	2.31	3.36	5.04				
9	1.38	1.83	2.26	3.25	4,78				
10	1.37	1.81	2.23	3.17	4.59				
11	1.36	1.80	2.20	3.11	4.44				
12	1.36	1.78	2.18	3.06	4.32				
13	1.35	1.77	2.16	3.01	4.22				
14	1.34	1.76	2.14	2.98	4.14				
∞	1.29	1.64	1.96	2.58	3.29				

 	٠.	•							
 - 34	. :		_						
 41114	ы 1	υ.,	daze	far	E at	+1	50/_	1 4	

Degrees of Freedom (Denominator)	Degrees of Freedom (Numerator)								
	2	3	4	5	6	12	20	02	
2	19.00	1916	19.25	19.30	19.33	19.41	19.45	19.50	
3	9.55	9.28	9.12	9.01	8.94	8.74	B.66	8.53	
4	6.94	6.59	6.39	6.26	6.16	5.91	5.80	5.63	
5	5.79	5.41	5.19	5.05	4.95	4 68	4.56	4.36	
6	5.14	4.76	4.53	4.39	4.28	4.00	3.87	3.67	
12	3.89	3.49	3.26	3.11	3.00	2.69	2.54	2.30	
20	3.49	3.10	2.87	2.71	2.60	2.28	2.12	1.84	
00	3.00	2.60	2.37	2.21	2.10	1.75	1.57	1.00	