## 國立中央大學九十一學年度轉學生入學試題卷

(25%) 1. Suppose that a particle of mass m moves in the xy-plane under the influence of a force field  $\vec{F} = -k(\hat{x}x + \hat{y}y)$ , where k is a positive constant,  $\hat{x}$  and  $\hat{y}$  are unit vectors in the directions of positive x-axis and y-axis of a proper coordinate system, respectively.

- (1). Find the equations of motion of the particle.
- (2). Show that under the appropriate initial conditions at time t=0, the solutions of the equations of motion are  $x(t)=x_0\cos\omega t$  and  $y(t)=y_0\sin\omega t$ , where  $\omega=\sqrt{k/m}$ ,  $x_0$  and  $y_0$  are constants.
- (3). Show that the total energy of the particle is  $E = \frac{k}{2}(x_0^2 + y_0^2)$ .
- (4). Show that the orbital angular momentum of the particle with respect to the origin of the coordinate system is  $\vec{L} = \hat{x} \times \hat{y} \sqrt{km} x_0 y_0$ .
- (25%) 2. A particle of mass m moves in three dimensions under a central conservative force with potential energy V(r).
- (1). Find the Hamiltonian of the particle in terms of spherical polar coordinates  $(r, \theta, \phi)$ . (Hints:  $x = r \sin\theta \cos\phi$ ,  $y = r \sin\theta \sin\phi$ ,  $z = r \cos\theta$ .)
- (2). Determine Hamilton's equations of motion of the particle.
- (3). Express the quantity  $J^2 = m^2 r^4 (\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta)$  of the particle in terms of the generalized momenta and show that it is a constant of motion.
- (25%) 3. A very thin ohmic conducting disk of radius b, and conductivity  $\sigma_c$  lies in the xy-plane with the origin at its center. A spatially uniform magnetic field is also present and given by  $\vec{B} = \hat{z} B_0 \cos(\omega t + \alpha)$ , where  $B_0$ ,  $\omega$ , and  $\alpha$  are constants. Find the induced current density  $\vec{j}$  produced in the disk.
- (25%) 4. Consider a linear isotropic homogeneous nonconducting medium of constant permittivity  $\epsilon$  and constant permeability  $\mu$ , and with a charge distribution and current distribution of volume charge density  $\rho(\vec{r},t)$  and current density  $\vec{j}(\vec{r},t)$ . In the Lorentz gauge, i.e.,  $\vec{\nabla} \cdot \vec{A} + \mu \epsilon \frac{\partial \Phi}{\partial t} = 0$ , find the differential equations satisfied by the vector potential  $\vec{A}(\vec{r},t)$  and the scalar potential  $\Phi(\vec{r},t)$ .

