Instructions: Answer the following questions. Make and state your own assumptions for questions where the information is not sufficient for you to solve them. For example, if you need the corresponding p-value of a normally distributed random variable evaluated at 2.5, you may indicate the value as, for example, $Pr(x \geq 2.5)$, where $x \sim \mathcal{N}(0,1)$.

- 1. (15 points) Suppose $x_1,...,x_n \stackrel{iid}{\sim} \mathcal{N}(\mu_1,\sigma_1^2)$ and $y_1,...,y_n \stackrel{iid}{\sim} \mathcal{N}(\mu_2,\sigma_2^2)$ are two independent random samples. Suppose also that the sample estimates for these parameters are: x, \bar{y}, s_x^2, s_y^2 . A statistician suspects that the variance of the first sample is k times the variance of the second sample, where k is a known constant. So he specifies her null and alternative hypotheses: $H_0: s_x^2 = ks_y^2$ and $H_1: s_x^2 \neq ks_y^2$. Also, he wants to test if the sample mean of x is twice the sample mean of y, i.e., $H_0: x=2\bar{y}$ and $H_1: \bar{x} \neq 2\bar{y}.$
 - (a) Are there any problems with his statement?
 - (b) How will you test these hypotheses? Please specify the statistics and their distributions under the null. Remember to specify the degrees of freedom, if any.
- 2. (10 points) Suppose a random variable z is known to have a χ^2 distribution with ν degrees of freedom, and w = 2z. Calculate E(w) and Var(w). What do you know about the distribution of w?
- 3. (10 points) Given a sample of size n, is the $(1-\alpha) \times 100\%$ confidence interval for a parameter always the same as the corresponding acceptance region for that parameter at a significance level? Briefly explain your answer. You may demonstrate by using examples.
- 4. (15 points) Suppose that on the basis of a random sample of size 250, you are to verify the claim that a population proportion is different from .30.
 - (a) If you set the rejection region to be $|\hat{p} .30| \ge .06$, what is the size of the type I
 - (b) Determine the numerical value of c so that the test based on the rejection region: $|\hat{p} - .30| \ge c \text{ has } \alpha = .10.$
- 5. (20 points) Suppose you are asked to estimate the following model:

$$y_t = b_1 + b_2 x_{2t} + \dots + b_k x_{kt} + e_t,$$

- t=1,...,T. And the OLS estimation gives you: $\hat{b}_1,...,\hat{b}_k$. However, at the 1%, 5%, and 10% significance levels, none of the estimaates is significantly different from zero except b_1 . Therefore, to predict a new observation y_{T+1} with new observation on independent variables x's, the best estimate for y_{T+1} is $\hat{y}_{T+1} = \hat{b}_1$. Give your
- 6. (10 points) Show that the variable t^2 with v degrees of freedom is a special case of the F variable with $v_1 = 1$ and $v_2 = v$. Here "t" refers to a Student's t variate.

國立中央大學八十五學年度轉學生入學試題卷

以務管理學系 三年級 科目: 統計學 共 / 真 第 / 頁

7. (20 points) Suppose you are asked to estimate the following model:

$$STEXP = a_0 + a_1AID + a_2W + a_3STINC + a_4POP + e$$

where t = 1, ..., 50. And you get the following results:

L3 // Dependent Variable is STEXP

SMPL range: 1 - 50 Number of observations: 50

=				
VARIABLE	CORFFICIENT	STD. ERROR	T-STAT.	Z-TAIL SIG.
				
c	-89.414484	86.016077	-1.0395090	0.304
AID	4.5006348	0.7642962	5.8886006	0.000
W	-1.3910\$25	0.8022946	-1.7338425	0.090
STINC	0.0001293	4.222E-05	3.0622413	0.004
POP	-0.5181407	0.1118457	-4.6326405	0.000

R-squared	0.993	3485 Mean of	f dependent va	r 3316.151
Adjusted R-squa	ared A	5.D. of	dependent va	r 4360.365
S.E. of regression $ oldsymbol{B} $		Sum of	Sum of squared resid	
Durbin-Watson s	stat 1.939	054 F-stati	istic	1715.576
Log likelihood -:		156		•
——————————————————————————————————————				

- (a) (10 points) What are A and B?
- (b) (10 points The F-statistic given in the table is provided to test "if the model is significant." What are the degrees of freedom for the F-statistic? What is the underlying null hypothesis for this test?