博碩士論文 92323129 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.225.95.229
姓名 陳彥霖(Yen-Lin Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 組織工程用三維支架之電腦輔助製程設計
(Computer-aided process design in 3D scaffolds for tissue engineering)
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 組織工程支架提供細胞生長的環境結構及組織成型後的外型,因此建構一個合適的支架結構與外型,對於組織培養相當重要。由於人體的器官或組織的構型非常複雜,可藉由電腦輔助設計或電腦斷層掃描影像重建來設計或重建支架的三維外型,並結合快速原型的切層理論與冷凍擠壓層積成型技術來建構複雜外型的組織工程用支架。
本研究目標在發展一套整合模型切層、加工路徑規劃以及四軸加工平台控制介面的軟體,以達成支架由設計到製作完成整合作業。本研究主要分為四個項目: 1.以減少支撐結構量進而縮短加工時間為目的的支架姿態最佳化。利用基因演算法來搜尋支架模型具最小軸對齊邊界方塊的方位,以符合製作平台可加工的區域;2.利用快速原型的切層理論建立支架模型輪廓,再根據切層輪廓的上下階層架構來建立支架模型的加工區域與支撐區域;3.依據支架內部多孔隙結構的要求,利用光柵掃瞄法規劃加工路徑方向,以求得加工路徑的點資料;4.經由串列通訊埠將加工路徑點資料傳輸至四軸加工平台,平台接收特定字串作動,以逐層堆積方式成型。
本研究以人體耳朵模型為例,由軟體分析其最佳建構位置、切層與規劃路徑點資料,並利用擠壓冷凍法製實作耳朵模型的切層路徑,以逐層堆疊方式製作複雜外型的組織工程用支架。
摘要(英) Three-dimensional scaffolds for tissue engineering provide growing structures and shapes for cells to grow into tissues. Therefore it is important to build suitable structures and appearances for cells to attach and grow. The shapes of scaffolds can be designed by applying computer-aided design or reconstructed from CT images.
This research studies the procedure and path planning algorithm for building 3D scaffolds with complicate shapes. The algorithm integrates model slicing, determination of supporting areas, path planning of injection nozzles, and communication interface with a four-axis manufacturing platform. The goal is to develop a software program to integrate the processes from design to manufacturing.
First, the orientation of the scaffold model is optimized by using genetic algorithm to reduce the manufacturing time and materials. Then, a slicing algorithm for rapid prototyping is applied to the model to generate the slices and their profile contours. The supporting area of each slicing layer is determined by minus the material area from the union of the profile contours of all slices above the current slicing layer. Finally, according to designed porous structure, the tool path points are determined by raster scanning. The coordinates of the tool path points are input to the manufacturing platform through a serial port so that the scaffold can be manufactured layer by layer.
A human ear is used as an example for verifying the above algorithms. The 3D ear model is fabricated by using tooth paste. The video taken by the microscope mounted on the machine shows the algorithms developed are capable for optimizing the procedure to fabricate scaffolds for tissue engineering.
關鍵字(中) ★ 幾何邊界方塊
★ 快速原型
★ 切層理論
★ 支架
關鍵字(英) ★ Boundary Box
★ Rapid Prototyping
★ Slicing Algorithm
★ Scaffold
論文目次 目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 IX
圖目錄 X
第1章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究方法簡介 4
1.4 章節瀏覽 5
第2章 研究理論與方法 6
2.1 冷凍擠壓層積原理 6
2.2 三維模型的建立 7
2.2.1 翼型邊線資料結構 7
2.2.2 VTK資料結構 9
2.2.3 STL檔案格式 11
2.2.4 模型破洞的搜尋 14
2.3 模型建構方位的規劃 15
2.3.1 幾何邊界方塊 16
2.3.2 基因演算法 17
2.3.3 包威爾搜尋法 21
2.4 建立模型切層輪廓 23
2.4.1 階梯效應與體積誤差率 23
2.4.2 模型切層輪廓的建立 24
2.4.3 交點計算與建立封閉輪廓 26
2.4.4 階層式輪廓建立 28
2.5 建立支撐輪廓 29
2.6 加工路徑規劃 32
2.6.1 單一方向加工路徑規劃 33
2.6.2 單一方向支撐路徑規劃 34
2.6.3 連續平行線加工路徑規劃 35
第3章 系統架構 37
3.1 系統原理與作業流程 37
3.2 硬體架構 39
3.2.1 桌上型四軸加工平台 39
3.2.2 低溫冷卻系統與加工平台 40
3.3 軟體架構 41
3.3.1 由電腦斷層掃描影像建立三維模型 42
3.3.2 支架模型前處理 43
3.3.3 搜尋模型最佳建構位置 44
3.3.4 模型切層輪廓與支撐輪廓 46
3.3.5 製作參數設定與平台控制 48
3.3.6 視頻顯微鏡觀測 48
第4章 實驗結果與討論 50
4.1 搜尋模型最小幾何邊界方塊 50
4.1.1 基因演算法參數設定 50
4.1.2 演算法搜尋結果與討論 52
4.1.3 模型的最佳建構位置 58
4.2 模型切層 59
4.2.1 模型切層方式 59
4.2.2 建立切層輪廓與支撐輪廓 60
4.3 模型路徑規劃 61
4.3.1 2D路徑規劃 61
4.3.2 4D路徑規劃 62
4.3.3 路徑規劃修正 63
4.4 支架製作 64
第5章 結論與未來展望 69
參考文獻 71
自述 74
參考文獻 [1]Agarwala M.K., Jamalabad V.R., Langrana N.A., et.al., “Structural quality of parts processed by fused deposition,” Rapid Prototyping Journal, Vol. 2, issue 4, pp. 4-19, 1996.
[2]Ang, T. H., Sultana, F. S. A., Humacher, D. W., et. al., “Fabrication of 3D Chitosan–Hydroxyapatite Scaffolds Using a Robotic Dispensing System,” Materials Science and Engineering: C, Vol. 20, Issue 2, pp. 35-42, 2002
[3]Baumgart B. G. “A Polyhedron Representation for Computer Vision,” In Proceeding of the National Computer Conference, Vol. 44, pp. 589-596, 1975.
[4]Byun H. S., and Lee K. H., “Determination of the optimal part orientation in layered manufacturing using a genetic algorithm,” International journal of production research, Vol. 43, NO 13, pp. 2709-2724, 2005.
[5]Chan, C. K., and Tan, S. T., “Determination of Minimum Bounding Box of an Arbitrary Solid : an Interative Approach,” Computers and Structure, Vol. 79, Issue 15, pp. 1433-1449, 2001.
[6]Chen, V. J., Smith, L.A., Ma, P. X., “Bone Regeneration on Computer-Designed Nano-Fibrous Scaffolds,” Biomaterials, Vol. 27, pp 3973 -3979, 2006,
[7]Choi, S. H., and Kwok, K. T., “A Topological Hierarchy-Sorting Algorithm for Layered Manufacturing”, Rapid Prototyping Jurnal, Vol. 10, No. 2, pp. 98-113, 2004.
[8]Choi, S. H., and Kwok, K.T., “Hierarchical Slice Contours for Layered-Manufacturing”, Computers in Industry, Vol. 48, Issue 3, pp. 219-239, 2002.
[9]Darling, A. L., and Sun, W., “3D Microtomographic Characterization of Precision Extruded Poly‑ -Caprolactone Scaffolds,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 70, Issue 2, 2004.
[10]Geng, L., Feng, W., Hutmacher, D. W., et. al., “Direct Writing of Chitosan Scaffold Using a Robotic System,” Rapid Prototyping Journal, Vol. 11, No. 2, pp. 90-98, 2005.
[11]Gottschalk, S., Lin, M. C., Manocha, D., “OBBTree: A Hierarchical Structure for Rapid Interference Detection”, In Proc. SIGGRAPH '96, p.171-180, 1996
[12]Hong, S. B., and Kawn, H. L., “Determination of Optimal Build Direction in Rapid Pototyping with Variable Slicing,” The International Journal of Advanced Manufacturing Technology, Vol. 28, No. 3, pp. 69-80, 2006.
[13]Huang, X., Zhang, W., Wang, C., et. al., “Fabricating Auricular Prostheses Based on Rapid Prototyping and the FreeForm Modelling System,” The International Journal of Advanced Manufacturing Technology, Vol 24, pp.11-12, 2004
[14]Hutmacher, D. W., Sittinger, M., and Risbud, M. V., “Scaffold-Based Tissue Engineering:Rationale for Computer-Aided Design and Solid Free-Form Fabrication Systems”, Trends Biotechnol., Vol. 22, No. 7, pp. 354-3562, 2004.
[15]Jens, D., Susmita, B., Howard, L. H., et. al., “From CT Scan to Ceramic Bone Graft,” Journal of the American Ceramic Society, Vol. 86, No. 7, pp. 1076-1080, 2003.
[16]Jiwen, W., and Leo, L. W., “Solid Freeform Fabrication of Permanent Dental Restorations via Slurry Micro-Extrusion,” Journal of the American Ceramic Society, Vol. 89, Issue 1, pp. 346-349, January 2006.
[17]Khalil, S., Nam, F., and Sun, W., “Multi-nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds,” Rapid Prototyping Journal, Vol. 11, No. 1, pp. 9-17, 2005.
[18]Kulkarni, P., Marsan, A., and Dutta, D., “A Review of Process Planning Technologies in Layered Manufacturing,” Rapid Prototyping Journal, Vol. 6, Issue 1, pp. 18-35, Mar 2002.
[19]Masood, S. H., and Rattanawong, W., “A Generic Part Orientation System Based on Volumetric Error in Rapid Prototyping,” The International Journal of Advanced Manufacturing Technology, Vol. 19, No. 3, pp. 209-216, 2002.
[20]Meakin, J. R., Shepherd, D. E. T., Hukins, D. W. L., “Fused Deposition Models from CT Scans,” The British journal of Radiology, Vol. 77, No. 918, pp. 504-507, 2004.
[21]Pandey, P. M., Reddy, N.V., Dhande, S.G., “Slicing Procedures in Layered Manufacturing: a Review,” Rapid Prototyping Journal, Vol. 9, No. 5, 2003
[22]Rattanawong, W., Masood, S. H., and Iovenitti, P., “A Volumetric Approach to Part-Build Orientation in Rapid Prototyping,” Journal of Materials Processing Technology, Vol. 119, Issue1, pp. 348-353, 2001.
[23]Tadmor, Z., and Goges, C. G., “Principles of Polymer Processing,” Wiley-Interscience, New York, 2006.
[24]Thrimurthulu, K., Pandey, P. M., and Venkata, R. N., “Optimum Part Deposition Orientation in Fused Deposition Modeling,” International Journal of Machine Tools and Manufacture, Vol. 44, No. 6, pp. 585-594, 2004.
[25]Wang, F., Shor, L., and Darling, A., et. al., “Precision Extruding Deposition and Characterization of Cellular Poly- -Caprolactone Tissue Scaffold”, Rapid Prototyping Journal, Vol. 10, pp. 42-49, 2004
[26]呂桓綜, “組織工程精密支架之製造”, 國立中央大學機械工程研究所碩士論文, 民91
[27]黃仁波, “以冷凍式快速原型法製作組織工程支架,” 國立中央大學機械工程研究所碩士論文, 民94
[28]黃學惠, “骨細胞支架之電腦輔助設計與製造,” 國立成功大學醫學工程研究所碩士論文, 民94
[29]賴景義, 翁文德, “逆向工程理論與應用,” 全華科技圖書股份有限公司, Ch. 5, November 2004.
指導教授 曾清秀(Ching-Shiow Tseng) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明