微積分

科號<u>123</u>___共____ 頁第<u>「</u>頁<u>*請在試卷【答案卷】內作答</u>

一. 填充題(每題八分)

- 1. Suppose that $f(x) = \sin^{-1}(\ln(3x+2))$. Then f'(x) = -
- 2. Let p = (0, -1) be a point of the curve $C : x^2 + xy + y^2 x = 1$. The tangent line equation of C at p is Z.
- 3. Let $H(x) = \int_0^{x^2} \frac{1}{1+t^3} dt$ and $L(x) = \int_0^x \frac{1}{1+t^3} dt$. Then $H'(2) - L'(4) = \overline{P}$
- $4. \int x \sec^2 x dx = \underline{\qquad }.$
- 5. Which of the following series is convergent? 戊

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$$

(b)
$$\sum_{n=1}^{\infty} \sin(\sqrt{n}+1)$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}+1}$$

(d)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n+1}}\right)^n$$

二. 計算與證明題(每題十二分)

1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable. Given $\mu = (\frac{3}{5}, \frac{4}{5})$, $\nu = (\frac{4}{5}, -\frac{3}{5})$. Prove that $\|\nabla f\|^2 = |f'_{\mu}|^2 + |f'_{\nu}|^2$, where f'_{μ} and f'_{ν} are the directional derivative of f in the direction of μ and ν , respectively.

- 2. Find the absolute maximum and absolute minimum of $f(x, y, z) = xy + z^2$ on $x^2 + y^2 + z^2 \le 1$.
- 3. Find the volume of the solid T that is bounded above by the cone $z^2 = x^2 + y^2$, below by the x-y plane and on the sides by the hemisphere $z = \sqrt{4 x^2 y^2}$.
- 4. Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms. Show that if $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges.
- 5. Let f(x) be a differentiable function. Suppose that f'(x) is continuous on [a,b], f'(a) > 0 and f(b) < f(a). Prove that there exists $c \in (a,b)$ such that f'(c) = 0.