## 國立中央大學九十一學年度轉學生入學試題卷

數學系 三年級

科目:高等微積分

共\_/\_頁 第\_/\_頁

1. (20%) Evaluate the following limits if they exist:

(a) 
$$\lim_{(x,y)\to(0,0)} \frac{|xy|^{3/2}}{x^2+y^2}$$
.

(b) 
$$\lim_{(x,y)\to(0,0)} \frac{\sin x \sin y}{x^2 + y^2}$$
.

2. (20%) Let

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{for } (x,y) \neq (0,0), \\ 0 & \text{for } (x,y) = (0,0). \end{cases}$$

Compute  $f_x(0,0)$ ,  $f_y(0,0)$ ,  $f_{xy}(0,0)$  and  $f_{yx}(0,0)$ .

- 3. (20%) Let f be continuous on the bounded closed interval [a,b], and  $f(x) \neq 0$  on [a,b].
  - (a) Show that there exists M>0 such that  $|f(x)|\geq M$  for all  $x\in [a,b]$ .
  - (b) Let  $\{f_n\}$  be a sequence of functions such that  $f_n \to f$  uniformly on [a,b]. Prove that  $\frac{1}{f_n}$  is defined for large n, and  $\frac{1}{f_n} \to \frac{1}{f}$  uniformly on [a,b] as  $n \to \infty$ .
- 4. (20%) Let  $\mathbb{R}^n$  be the n-dimensional Euclidean space. Let  $E \subset \mathbb{R}^n$ .
  - (a) Give the definition that  $f: E \to \mathbb{R}^m$  be uniformly continuous on E. What is the difference between "continuous on E" and "uniformly continuous on E"?
  - (b) Prove that if  $f: E \to \mathbb{R}^m$  is continuous on E and if E is a compact set, then f is uniformly continuous on E.
- 5. (20%) Let C be the unit circle  $x^2+y^2=1$  traversed counterclockwise.
  - (a) Evaluate the line integral

$$\int_C \frac{y}{x^2 + y^2} \, dx - \frac{x}{x^2 + y^2} \, dy.$$

(b) Let  $F(x,y)=\left(\frac{y}{x^2+y^2},\frac{-x}{x^2+y^2}\right)$ . Is F(x,y) a gradient? Why?

