立中央大學八十五學年度轉學生入學試題卷

三年級 數學系

科目: 高等微積分 共 / 頁 第 / 頁

- 1. (a) Let $f(x) = \frac{1}{x}$, $x \in (0,1]$. Is f continuous on [0,1]? Could you redefine f(0) such that f is continuous [0,1]? Does f have maximum on [0, 1]? Prove your results.
 - (b) Let $f(x) = \chi^2 \sin \frac{1}{x}$ for $x \neq 0$. Find $\lim_{x \to 0} f(x)$. Is f continue of f(x) = 0ous, uniformly continuous on [0,1]? on $(-\infty,\infty)$? Find f'(0), (20%)f''(0).
- 2. Let f be a continuous mapping of a compact metric space X into a (15%)metric space Y. Prove: f(X) is compact.
- 3. (1) Show by ε - δ definition of the limit that $\lim_{x \to 1} \frac{1}{x} = 1$
 - (2) Show $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1).
 - (3) Is $f(x) = x^2$ uniformly continuous on [0,1]? on $(-\infty,\infty)$? Verify the results.

4. Let
$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}$$
. (15%)

- (1) Show the series converges uniformly on $[a, \infty)$ for a > 0.
- (2) Does the series converges uniformly $(0, \infty)$? Verify the results.
- (3) Is f(x) continuous on $[a, \infty)$ for a > 0 and continuous on $(0, \infty)$? Verify your results.
- 5. If f is a real continuous function on [a, b] and α is an increasing function on [a,b] then show f is Riemann-Stieljes integrable with respect to α (10%)over [a, b].
- 6. We say f is Lipschitz continuous on [a,b] if $\exists M > 0$ s.t. $|f(x)-f(y)| \le M|x-y|$ for all $x,y \in [a,b]$. Prove: If f' is continuous on [a,b] then fis Lipschitz continuous on [a, b].
- 7. Let f, f_n $(n = 1, 2, \cdots)$ be Riemann integrable on [a, b] and $f_n \to f$ on [a, b]. Is

 $\int_{a}^{b} f dx = \lim_{n \to \infty} \int_{a}^{b} f_{n} dx?$ (*)

If it's not true, give condition on f_n such that (*) is true. Verify your (15%)results.