博碩士論文 92323137 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.138.118.194
姓名 邱亦絜(Yi-Hsieh Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電滲泵內多孔介質微流場特性之數值模擬
(Numerical Study for the Micro Porous Media Flow in an Electroosmotic Pump)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 被動式微混合器之數值模擬
★ 電滲泵的製作與性能測試★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討
★ 無動件式高流率電滲泵的製作與特性分析★ 微電滲泵之暫態熱流研究
★ 高解析熱氣泡式噴墨頭墨滴成形觀測★ 電滲泵之焦耳熱效應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於電滲泵目前已廣泛用於生物醫葯分析技術驅動流體的功能上,近來更在微電子冷卻技術中流體推動佔相當的重要性。本文以數值模擬探討在電滲泵中多孔介質微流道的電滲流,使用的物理模式包括:1) 描述電雙層分佈的Poisson-Boltzmann方程式,2) 描述外加電場電位勢分佈之Laplace方程式,3) 描述多孔介質流道下的電滲流之包含電驅動力及微觀的黏滯剪應力及多孔介質微結構的幾何效應的修正型Navier-Stokes的方程式,幾何外形為二維軸對稱微毛細圓管。
本文除了驗証Rice和Whitehead的解析解,並與Yao和Santiago的實驗數據做比較。文中對主導電滲流在多孔介質的特性的壁面及多孔介質的介面電位勢比值做詳細探討,發現其比值為正的流速分佈和比例為負值時有明顯差異。若以圓毛細管塞入球形粒子仿多孔介質流道的數值模擬,可有效修正Yao和Santiago以多根圓毛細管捆束後類多孔介質流道之解析解對於流率及壓力高估的問題。從文中得知電解液離子濃度會影響電雙層厚度,離子濃度愈高,電滲流流速愈快;其它如多孔介質間之孔隙流道大小、外加電場強度、入口壓力、壁面及多孔介質間介面電位勢都會影響電滲流流速的增減。
摘要(英) The electroosmotic (EO) pump has been widely used in driving and controlling microfluidics in the biomedical and biochemical applications, and it is being used for cooling liquid transportation in the micro cooler in electronics industry recently. The physical models of present numerical study are based on 1) the Poisson-Boltzmann equation for electrical double layer (EDL) potential, 2) the Laplace equation for the externally applied electrostatic field, and 3) the Navier-Stokes equation modified to account for the electro-kinetic body force and porous media effect. This study numerically analyzed various flow characteristics of porous media within the EO pump.
We first validated the EO flow in a micro circular capillary tube with theory, and then developed a model for embedded micro particles into a circular capillary tube to mimic the porous media channels in a realistic EO pump. We have thoroughly investigated the effect of the ratio of zeta potential at wall to zeta potential of particles, which is a dominant factor for affecting the characteristics EO flow within the porous media. Numerical solution agrees with analytical solutions and it also compare with available experiment data, this modified model can effectively correct overestimated values of flowrate and back pressure in previous analytical model. We found many factors affect the EO flow within the porous media; these factors are the ion concentration, the pore size of porous media channel, the applied electrical field and the zeta potential.
關鍵字(中) ★ 電滲泵
★ 電滲流
★ 多孔介質
關鍵字(英) ★ Porous media
★ Electroosmotic flow
★ Electroosmotic pump
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖、表目錄 VII
符號說明 X
第一章 電滲泵的研究 1
1.1 微泵之簡介 1
1.1.1 微泵的分類及微泵技術的發展 1
1.1.2 電滲泵與其他微泵的比較 3
1.2 電雙層及電滲流的形成機制 4
1.2.1 電雙層 4
1.2.2 電滲流 5
1.3 電滲流及電滲泵研究文獻回顧 6
1.3.1 電滲流之理論與數值模擬 6
1.3.2 電位勢及濃度關係 8
1.3.3 電滲流實驗分析 8
1.3.4 多孔介質電滲泵之數值模擬 10
1.4 研究動機與方向 11
第二章 電滲泵之數值分析 13
2.1 基本假設 14
2.2 描述電雙層分佈之Poisson-Boltzmann 方程式 14
2.3 描述外加電場電位勢分佈之Laplace方程式 15
2.4 描述電滲流流場之Navier-Stokes方程式 16
2.4.1 修正型Navier-Stokes方程式 16
2.4.2 多孔介質流:Carman-Kozeny理論 17
2.4.3 考慮帶電毛細管壁面及塞入的帶電球形粒子
之壁面效應 18
2.5 無因次方程式 20
2.6 邊界條件 22
2.7 FEMLAB簡介 24
第三章 結果與討論 25
3.1 模擬參數及格點測試 25
3.1.1 模擬參數 25
3.1.2 格點測試 26
3.2 速度場及相關物理參數 28
3.2.1 電雙層靜電位勢 29
3.2.2 長直圓毛細管電滲流速度場 29
3.2.3 多孔介質流道電滲流速度場 30
3.2.4 影響速度分佈之參數討論 30
3.3 影響流量的相關參數 32
3.4 影響壓力的相關參數 35
3.5 影響電流的相關參數 36
第四章 結論與建議 39
4.1 結論 39
4.2 建議 40
參考文獻 63
附錄A FEMLAB定義方程式的語法 66
附錄B 電流相關解析解 69
參考文獻 B. Alazmi and K.Vafai, “Analysis of variants within the porous media transport models,” J. Heat Transfer, 122 (2000) 303-326.
S. Arulanandam and D. Li, “Liquid transport in rectangular microchannels by electroosmotic pumping,” Colloids Surf. A, 161 (2000) 89-102.
B.A. Grimes, J.J. Meyers, A.I. Liapis, “Determination of the intraparticle Electroosmotic volumetric flow-rate, velocity and Peclet number in capillary electrochromatography from pore network theory,” J. Chromatography A, 890 (2000) 61-72.
C.H. Chen and J.G. Santiago, “A planar electroosmotic micropump,” J. Microelectromechanical Systems, 11(6) (2002) 672-683.
L. Jiang, J. Mikkelsen, J.M. Koo, D.H, S.Yao, L. Zhang, P. Zhou, J.G. Maveety, R. Prasher, J.G. Santiago, T.W. Kenny, and K.E. Goodson, “Closed-loop electroosmotic microchannel cooling system for VLSI circuits,” IEEE Transactions on Components and Packaging Technologies., 25(3) (2002) 347-354.
Y. Kang, C. Yang and X. Huang, “Analysis of the electroosmotic flow in a microchannel packed with homogeneous microspheres under Electrokinetic wall effect.” Int. J. Engineering Science, 42 (2004) 2011-2027.
G.E. Karniadakis and A. Beskok, Microflows: Fundamentals and Simulation, Springer-Verlag, New York, (2002).
M. Kaviany, Principles of Heat Transfer in Porous Media, Springer- Verlag, New York, (1995).
D.J. Laser and J.G. Santiago, “Topic review: A review of micropumps,” J. Micromech. Microeng., 14 (2004) 35-64.
A.I. Liapis and B.A. Grimes, “Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems,” J. Chromatography A, 877 (2000) 181-215.
G.M. Mala, D. Li and J.D. Dale, “Heat transfer and fluid flow in microchannels,” Int. J. Heat Mass Transfer, 40 (1997) 3079-3088.
N.A. Patankar and H.H. Hu, “Numerical Simulation of Electroosmotic Flow.” Analytical Chemistry, 70 (1998) 1870-1881
V. Pretorius, B.J. Hopkins and J.D. Schieke, “A new of concept for high-speed liquid chromatography.” J. Chromatography A, 99 (1974) 23-30.
R.F. Probstein, Physicochemical Hydrodynamics, Wiley, New York, second edition, (1994).
A.S. Rathore and Cs. Horvath, “Capillary electrochromatography: theories on electroosmotic flow in porous media,” J. Chromatography A, 781 (1997) 185-195.
C.L. Rice and R. Whitehead, “Electrokinetic flow in a narrow cylindrical capillary,” J. Phys. Chem., 69 (1965) 4017-4024.
N. Scales and N. Tait, “Modeling electroosmotic flow in porous media for microfluidic applications” Proc. of the 2004 Int. Conf. on MEMS, NANO and Smart Systems (2004).
P.J. Scales, F. Grieser, T.W. Healy, L.R. White and D.Y.C. Chan, “Electrokinetics of the silica solution interface: a flat-plate streaming potential study,” Langmuir 8 (1992) 965-974.
V. Singhal, S.V Garimella and A. Raman, “Microscale pumping technologies for microchannel cooling systems,” App. Mech. Rev., 57 (2004) 191-221.
G.Y. Tang, C. Yang, C.K. Chai and H.Q. Gong, “Numerical analysis of the thermal effect on electroosmotic flow and Electrokinetic mass transport in microchannels,” Analytical Chimica Acta. 507 (2004) 27-37.
C. Yang, D. Li and J. H. Masliyah, “Modeling forced liquid convection in rectangular microchannels with Electrokinetic effects.” Int. J. Heat Mass Transfer, 41, (1998) 4229-4249.
R.J. Yang, L.M. Fu and Y.C. Lin, “Electroosmotic flow in microchannels,” J. Colloid and Interface Science, 239 (2001) 98-105.
R.J. Yang, L.M. Fu and C.C. Hwang, “Electroosmotic entry flow in a microchannel,” J. Colloid and Interface Science, 244 (2001) 73-179.
R.J. Yang, T.I. Tseng and C.C. Chang, “End effects on electro-osmotic flows in micro-channels,” J. Micromech. Microeng., 15 (2005) 254-262.
D.E. Yates, S. Levine, T.W. Healy and J. Chem., “Site-binding model of the electrical double layer at the oxide/water interface,” Soc. Faraday Trans. 74 (1974) 1807-1818.
S. Yao, D.H, J.C. Mikkelsen and J.G. Santiago, “A large flowrate electroosmotic pump with micron pores,” Proc. of IMECE 2001 ASME Int. Mechanical Engineering Congress and Exposition, (2001).
S. Yao and J.G. Santiago, “Porous glass electroosmotic pumps: theory,” J. Colloid and Interface Science, 268 (2003) 133-142.
S.Yao, D.E. Hertzog, S. Zeng, J.C. Mikkelsen Jr. and J.G. Santiago, “Porous glass electroosmotic pumps: design and experiments,” J. Colloid and Interface Science, 268 (2003) 143-153.
S. Zeng., C.H. Chen., J.C. Mikkelsen Jr. and J.G. Santiago., “Fabrication and characterization of electroosmotic micropumps,” Sensors and Actuators B, 79 (2001) 107-114.
T.S. Zhao and Q. Liao, “Thermal effects on electroosmotic pumping of liquids in microchannels,” J. Micromech. Microeng. 12 (2002) 962-970.
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明