博碩士論文 92343008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.147.44.146
姓名 侯光煦(Kung-Hsu Hou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 脈衝電流電鑄Ni-P鍍層之磨潤特性研究
(Study on Tribological Characteristics of Ni-P Based CoatingsProduced by Pulse Current Electroforming)
相關論文
★ 反應性磁控法濺鍍氮化鈦鎢薄膜磨潤行為研究★ 應用田口方法於發光二極體導線架 射出成型參數最佳化之研究
★ 應用田口方法於半導體晶圓盒製造最佳化★ 虛擬護理數位診斷模擬系統開發之研究
★ 虛擬射出成型試驗機之研究★ 藥柱疲勞特性與壽限評估模式之研究
★ 網際網路虛擬護理照護數位模擬系統之研究★ 虛擬實境應用於手部復健與電動輪椅模擬系統之研發
★ 縮尺發動機振動與疲勞壽限之研究★ 應用駕駛模擬器探討震動防撞警示系統之技術開發與研究
★ 虛擬實境應用於坐姿平衡訓練系統之研究★ 符合SCORM規範之射出成型數位學習系統建置與研究
★ 虛擬場景模組化與自動編輯系統開發之研究★ 虛擬內視鏡基礎技術訓練系統學習轉移之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ A533與A508鋼材疲勞裂縫成長特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究藉由脈衝電流電鑄技術,發展Ni-P合金鍍層及Ni-P-SiC複合鍍層的製備,並於常溫、不同昇溫(100~300℃)及無潤滑條件下對其進行磨潤實驗研究。研究結果發現脈衝電鑄Ni-P鍍層的內應力遠低於直流電鑄的Ni-P鍍層;分析發現甫鍍製高磷含量(P > 8 wt.%)之Ni-P電鑄層,其硬度隨著磷含量的增加而降低,隨磷含量的增加,鍍層結構由微結晶態逐漸轉變為X-ray非晶態。常溫磨耗試驗及分析顯示:甫鍍製Ni-P鍍層之磨耗阻抗隨鍍層硬度增加而增加;硬度為主要影響磨耗阻抗的主要性質,甫鍍製Ni-P鍍層磨耗阻抗最高可達Ni鍍層的11倍。經400℃熱處理之Ni-P鍍層存在硬質Ni3P相的析出,此可進一步降低鍍層的磨耗率;熱處理鍍層的磨耗阻抗最高可提昇為甫鍍製鍍層的2.5倍。甫鍍製及熱處理鍍層的磨耗阻抗及硬度均隨晶粒尺寸增大而增加;亦即高磷Ni-P鍍層的強度與晶粒尺寸呈現逆轉Hall-Petch 關係。於溫度100~300℃的磨耗試驗顯示,甫鍍製(P: 8.7wt.% ~13.9wt.%)Ni-P鍍層的磨耗阻抗隨溫度昇高而增加。
在Ni-P-SiC 複合鍍層的研究上,採用0.3μm 的碳化矽微粒引入鍍液中,顯示鍍層之磷含量隨鍍液中的碳化矽微粒濃度增加而降低,且鍍層中沉積之SiC微粒含量隨鍍液中碳化矽濃度增加而增加。脈衝電鑄鍍層之SiC微粒含量為0.2 - 1.5 wt.%高於直流電鑄鍍層之SiC微粒含量0.2 - 0.5 wt.%。磨潤研究顯示脈衝Ni-P-SiC鍍層之耐磨性優於直流Ni-P-SiC電鍍層,且於相同硬度條件下,Ni-P-SiC複合鍍層之磨耗阻抗優於Ni-P鍍層;相同電鑄條件下,Ni-P-SiC複合鍍層之重量磨損可較Ni-P鍍層減少62 %,而Ni-P-SiC複合鍍層的磨耗阻抗最高可達純Ni 的10倍。
摘要(英) In this study, attempt has been made to investigate the wear resistance of Ni-P alloy coatings and Ni-P-SiC composite coatings that manufactured by pulse current (PC) electroforming technology. The tribological tests of such plated coatings were carried out at ambient temperature, evaluated temperature(100~300℃) and without lubricants conditions. The results of this investigation showed that the internal stress of the PC-deposited Ni-P coating is much lower than that of direct current (DC) deposited Ni-P coatings. The analytical results of the high phosphorous contents (P > 8 wt.%) coatings indicate that increasing the phosphorus content in the layer reduces the hardness of the Ni-P electroformed coatings, and the gradually leading to the coatings structure from micro-crystalline transform to X-ray amorphous.
Wear test results of as-plated Ni-P coatings under normal temperature show that the wear resistance of Ni-P alloy layers increases with the hardness of the coatings. The hardness primarily affects the wear resistance of the Ni-P as plated coatings; and the optimum wear resistance of Ni-P coatings can reach 11 times that of Ni coatings. After heat-treatment that would be enhancing the strength of the Ni-P coatings and leads to a lower wear rate for heat-treated coating. The wear resistance of heat-treated coating can be as high as 2.5 times that of as-plated coating. In addition, the wear resistance and hardness increases with the increasing of grain size for both as-plated and heat-treated coatings. It suggests that the strength and grain size of the Ni-P coating with high phosphorus content obeys the inverse Hall-Petch relationship. Under evaluated temperature saturation, the wear tests show that the wear resistance of the as-plated Ni-P (P: 8.7wt.% ~13.9wt.%) coatings was increased with temperature increased.
In the Ni-P-SiC composite coatings, the study attempted to incorporate 0.3μm SiC particles into a Ni-P alloy matrix by pulse current (PC) and direct current (DC) plating. Both plating methods showed that the phosphorus content in the deposit falls with increasing SiC content in the bath, and that the SiC content in the composite coating rises with rising SiC content in the bath. The pulse plating deposit with SiC particles 0.2 - 1.5 wt.% was higher than direct current plating with SiC particles 0.2 - 0.5 wt. % in deposits. The wear-proof shows that the tribological behavior of Ni-P-SiC of the PC plating is better than that of the DC plating deposit. At normal temperature, experimental results show that the wear resistance of Ni-P-SiC composite coatings is superior to Ni-P composite coatings if under the same level of hardness. The wear weight loss of Ni-P-SiC composite coatings is even about 62% less than that of Ni-P composite coatings, in which is based on the same produced condition. Further more, both the hardness and wear resistance of Ni-P-SiC composite coatings are superior to pure Ni coating, wherein its wear resistance is even up to 10 times better than the pure that of Ni coating.
關鍵字(中) ★ 鎳磷合金鍍層
★ 鎳磷碳化矽複合鍍層
★ 脈衝電流
★ 電鑄
★ 磨潤
★ 磨耗阻抗
★ 磨耗機制
關鍵字(英) ★ Wear mechanism
★ Wear resistance
★ Tribology
★ Ni-P alloy coatings
★ Ni-P-SiC composite coatings
★ Pulse current
★ Electroforming
論文目次 摘 要 I
ABSTRACT II
謝 誌 IV
目 錄 V
圖目錄 IX
表目錄 XII
第一章 前言 1
1-1 研究背景 1
1-1.1 微機電系統LIGA製程之微電鑄 1
1-1.2 鎳基微電鑄鍍層與磨潤相關之應用 2
1-1.3 Ni-P及Ni-P複合電鑄鍍層 3
1-2 研究目的與研究架構 4
第二章 理論基礎 7
2-1 電沉積製程相關理論 7
2-1.1 電化學沉積金屬的基礎理論 7
2-1.2 電鑄原理 12
2-1.3 電鑄鎳鍍層 13
2-1.4 合金電鍍機制 14
2-1.5 複合鍍共沈積機制與原理 15
2-1.6 脈衝電鍍 17
2-2磨潤相關理論 18
2-2.1 摩擦 18
2-2.2 磨耗 21
2-2.3 潤滑 25
第三章 文獻回顧 28
3-1 NI-P鍍層電沉積效率 28
3-2 NI-P鍍層電沉積機制 28
3-3 NI-P合金之內應力 29
3-4 NI-P合金之微硬度 30
3-5 NI-P合金之鍍層結構 31
3-6 NI-P基複合電鍍之耐磨性 32
第四章 實驗規劃與實驗設備 35
4-1 實驗規劃 35
4-2 儀器設備與實驗藥品 35
4-2.1 電鑄實驗及鍍層分析儀器設備 36
4-2.2 鍍層磨潤實驗及檢測儀器 36
4-2.3鍍層性質檢測儀器 36
4-3 電鑄製程化學藥品 36
4-4 鍍層內應力測試方法 37
4-5鍍層磨潤實驗方法 37
4-6 微硬度量測方法 38
第五章 脈衝電鑄NI-P合金鍍層性質分析 44
5-1 前 言 44
5-2 實驗參數與條件 44
5-3實驗結果與討論 45
5-3.1脈衝電鑄參數對Ni-P 合金鍍層性質的影響 45
5-3.2實驗量測值、預測值的比較及迴歸分析 48
5-3.3 Ni-P鍍層性質間的相關性與信賴度關係 49
5-4結 論 50
第六章 脈衝電鑄NI-P合金鍍層之磨潤研析 58
6-1 脈衝與直流電鑄NI-P鍍層的性質及結構 58
6-1.1 前言 58
6-1.2 實驗參數及條件 59
6-1.3 Ni-P合金鍍層的性質及微結構 60
6-2 NI-P合金鍍層於常溫環境的磨耗研析 64
6-2.1 摩擦係數與磨耗重量損失 64
6-2.2磨損表面之顯微觀察與成份分析 65
6-2.3 磨耗阻抗與鍍層磷含量及硬度的關係 67
6-2.4 氧化鐵膜 vs. 鍍層結構對磨耗特徵的影響 68
6-3 熱處理對NI-P鍍層的結構及磨耗行為影響效應 83
6-3.1 前言 83
6-3.2 熱處理對Ni-P鍍層結構的影響 83
6.3-3熱處理對晶粒尺寸、硬度及磨耗的影響 84
6-3.4 Ni-P鍍層熱處理前、後之磨耗特徵及耐磨性 85
6-4溫度對NI-P鍍層熱穩定及磨耗特徵影響 94
6-4.1前言 94
6-4.2 溫度對Ni-P合金鍍層摩擦係數的影響 94
6-4.3溫度對鍍層磨耗損失與硬度之影響 95
6-4.4溫度對鍍層結構、磨損型態及磨潤機制的探討 96
6-5 結 論 108
第七章 脈衝電鑄NI-P-SIC複合鍍層之磨潤研析 110
7-1 脈衝NI-P-SIC及直流NI-P-SIC複合鍍層的特徵比較 110
7-1.1 前言 110
7-1.2 實驗規劃與設計 110
7-1.3 Ni-P-SiC複合鍍層中SiC微粒的含量與分布 111
7-1.4 磷元素含量對Ni-P-SiC複合鍍層性質的影響 112
7-2 脈衝電鑄NI-P-SIC複合鍍層常溫耐磨性質研析 120
7-2.1 前言 120
7-2.2 實驗規劃與設計 121
7-2.3 電鑄參數對Ni-P-SiC鍍層性質的影響 122
7-2.4 Ni-P-SiC鍍層磨耗實驗結果分析 122
7-2.5 Ni-P-SiC鍍層磨損表面之顯微觀察與分析 123
7-2.6 Ni-P-SiC鍍層之磨耗阻抗與性質的關係 124
7-3 昇溫效應對NI-P-SIC複合鍍層的耐磨特徵影響 134
7-3.1 前言 134
7-3.2 耐溫磨耗之Ni-P-SiC鍍層性質 135
7-3.3 溫度對Ni-P-SiC鍍層之摩擦與磨耗的影響 135
7-3.4 Ni-P-SiC鍍層於昇溫磨耗試驗後的XRD分析 137
7-3.5 Ni-P-SiC鍍層昇溫磨耗表面之顯微觀察 137
7-4 結 論 146
第八章 綜合結論 148
未來研究方向 155
參考文獻 156
博士進修期間發表論著 167
個人簡歷 168
參考文獻 2. Williams, J.A., “Engine Tribology,” Oxford University Press, New York, USA, Chapter 2, p.71, 1994.
3. Tacken, R.A. and Janssen, J.J.L., “Applications of Magnetoelectrolysis,” Journal of Applied Electrochemistry, Vol. 25, pp. 1-5, 1995.
4. Fujioka, J., “Integral Equations in Linear Sweep Voltammetry of Irreversible Reactions with Adsorption of Stationary and Rotating Disk Electrodes,” Journal of Crystal Growth, Vol. 91, pp. 147-154, 1988.
5. Vallotton, P.H., Matlosz, M. and Landolt, D., “Experimental Investigation of The Terminal Effect in Lead Electrodeposition Into Resistive Substrates,” Journal of Applied Electrochemistry, Vol. 23, No. 43, pp. 927-932, 1993.
6. Becker, E.W., Ehrfeld, W., Hagmann, P., Maner A., and Muchmeyer, D., “Fabrication of Microstructures with High Aspect Ratio and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Molding (LIGA Process),” Microelectronic Engineering, Vol. 4, No. 3, pp. 35-38, 1986.
7. Watson, S. W., “Electrochemical Study of SiC Particle Occlusion during Nickel Electrodeposition,” Journal of the Electrochemical Society, Vol. 140, No. 8, pp. 2235-2237, 1993.
8. Maner, A., Harsch, S. and Ehrfeld, W., “Mass Production of Microdevices with Extreme Aspect Ratios by Electroforming,” Plating and Surface Finishing, Vol. 113, No. 4, pp. 214, 1988.
9. Chakravorty, K.K., Chien, C.P., Cech, J.M., Tanielian, M.H. and Young, P.L., “High-Density Interconnection Using Photosensitive Polyimide and Electroplated Copper Conductor Lines,” IEEE Transactions on Components. Hybrids, and Manufacturing Technology, Vol. 13, No. 1, pp. 200-206, 1990.
10. Hessami, S. and Tobias, C. W., “A Mathematical Model for Anomalous Codeposition of Nickel-Iron on a Rotating Disk Electrode,” Journal of the Electrochemical Society, Vol. 136, No. 12, pp. 3611-3616, 1989.
11. Socha, R.P., Nowak, P., Laajalehto, K. and Väyrynen, J., “Particle-Electrode Surface Interaction during Nickel Electrodeposition from Suspensions Containing SiC and SiO2 Particles,” Colloids and Surfaces A: Physicochem. Eng., Vol. 235, pp. 45-55, 2004.
12. Panda, A. and Podlaha, E.J., “Nanoparticles to Improve Mass Transport Inside Deep Recesses,” Electrochemical and Solid-State Letters, Vol. 6, No. 11, pp. c149-c152, 2003.
13. Li, Xiaochun, and Li, Zhiwei, “Nano-Sized Si3N4 Reinforced NiFe Nanocomposites by Electroplating,” Materials Science and Engineering, Vol. A358, No. 1-2, pp. 107-113, 2003.
14. van der Putten, A.M.T., and de Bakker, J.W.G., “Anisotropic Deposition of Electroless Nickel,” Journal of the Electrochemical Society, Vol. 140, No. 8, pp. 2229-2234, 1993.
15. Watanabe, H. and Honma, H., “Fabrictation of Nickefl Microbump on Aluminum Using Electroless Nickel Plating,” Journal of the Electrochemical Society, Vol. 14, No. 42, pp. 471-476, 1997.
16. Diamand, Y. S., “100nm Wide Copper Lines Made by Selective Electroless Deposition”, J. Micromech. Microeng, Vol. 1, pp. 66-72, 1991.
17. Semba, T., Saiki, T., “Development of electroforming technique for fabricating electroformed diamond tool with high grain density,” Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 70, No. 6, pp. 1849-1854, 2004.
18. Semba, T., Tomita, N., Fujii, S., “Development of high-speed electroforming technique,” Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 69, No. 3, pp. 773-779, 2003.
19. Mao, M.Y., Wang, X.D., Xie, J.F., Wang, W.Y., “Fully self-aligned nickel wobble micromotors fabricated at low temperature,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 2879, pp. 236-241, 1996.
20. Wolfgang E., “Electrochemistry and Microsystems,” Electrochimica Acta, Vol. 48, No. 2857-2868, 2003.
21. Riedel, W., “Electroless Nickel Plating,” Finishing Publications Ltd., Stevenage, 1991.
22. Diegle, R. B., Sorensen, N. R. and Nelson, G. C., “Dissolution of Glassy Ni-P Alloys in H2SO4 and HCl Electrolytes,” Journal of the Electrochemical Society, Vol. 133, No. 9, pp. 1769-1776, Sep, 1986.
23. Chang, G.X., Xin, M.H., Zong, G.D., and Yan, W.W., “Properties of Electroless Ni-P and Ni-P-SiC,” Plating and Surface Finishing, Vol. 76, No. 6, pp. 90-93, 1989.
24. McKnight, S.W. and Ibrahim, A.K., “Determination of Transport Parameters in Amorphous Ni-P by Infrared Reflectivity and Hall Measurements,” Journal of Non-Crystalline Solids, Vol. 61-62, No. 2, pp. 1301-1306, 1983.
25. Dini, J.W., Electrodeposition: The Materials Science of Coatings and Substrates, Published by Noyes Publications, USA.
26. Paunovic, M., and Schlesinger, M., Fundamentals of Electrochemical Deposition, Ch 6, pp.73-100, The Electrochemical Society, USA.
27. Becker, E.W., Ehrfeld, W., Hagmann, P., Maner A., and Muchmeyer, D., “Fabrication of Microstructures with High Aspect Ratio and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Molding (LIGA Process),” Microelectronic Engineering, Vol. 4, No. 3, pp. 35-38, 1986.
28. Maner, A., Harsch, S. and Ehrfeld, W., “Mass Production of Microdevices with Extreme Aspect Ratios by Electroforming,” Plating and Surface Finishing, Vol. 113, No. 4, pp. 214, 1988.
29. Hovestad, A., and Janssen, L. J. J., “Electrochemical Co-deposition of Inert Particles in a Metallic Matrix,” Journal of Applied Electrochemistry, Vol. 25, No. 6, pp. 519-527, 1995.
30. Gulielmi, N., “Kinetics of the Deposition of Inert Particles from Electrolytic Baths,” Journal of the Electrochemical Society, Vol. 119, No. 8, pp. 1009-1012, 1972.
31. Celis, J. P., Roos, J. R., and Buelens, C., “Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic matrix,” Journal of the Electrochemical Society, Vol. 134, No. 6, pp. 1402-1408, 1987.
32. Hwang, B. J. and Hwang, C. S., “Mechanism of Codeposition of Silicon Carbide with Electrolytic Cobalt,” Journal of the Electrochemical Society, Vol. 140, No. 4, pp. 979-984, 1993.
33. Puippe, J. Cl. and Ibl, N., “Influence of Charge and Discharge of Electric Double Layer in Pulse Plating,” Journal of Applied Electrochemistry, Vol. 10, No. 6, pp. 775-784, 1980.
34. Holmbom, L. G., “Effects of Bath Temperature and Pulse-Plating Frequency on Growth Morphology of High-Purity Gold,” Plating and Surface Finishing, Vol. 74, No. 9, pp. 74-79, 1987.
35. Holmbom, G. and Jacobson, B.E., “Nucleation and Initial Growth of Pulse-Plated Gold on Crystalline and Amorphous Substrates,” Journal of the Electrochemical Society, Vol. 135, No. 11, pp. 2720-2725, 1988.
36. Roy, S. and Landolt, D., “Determination of the Practical Range of Parameters during Reverse-Pulse Current Plating,” Journal of Applied Electrochemistry, Vol. 27, No. 3, pp. 299-307, Mar, 1997.
37. Yin, K.M., “Duplex Diffusion Layer Model for Pulse with Reverse Plating,” Surface and Coatings Technology, Vol. 88, No. 1-3, pp. 162-164, 1997.
38. Mandich, N.V., “Pulse and Pulse-Reverse Electroplating,” Metal Finishing, Vol. 97, No. 1, pp. 382-387, 1999.
39. Chin, D.T., “Mass Transfer and Current-Potential Relation in Pulse Electrolysis,” Journal of the Electrochemical Society, Vol. 130, No. 8, pp. 1657-1667, 1983.
40. Chene, O., and Landolt, D., “Influence of Mass Transport on the Deposit Morphology and the Current Efficiency in Pulse Plating of Copper,” Journal of Applied Electrochemistry, Vol. 19, No. 2, pp. 188-194, 1989.
41. Puippe, J.C., and Leaman, F., Theory and Practice of Pulse Plating, American Electroplaters and Surface Fnishers Society, New York, pp. 17-40, 1986.
42. Mandich, N.V., “Pulse and Pulse-Reverse Electroplating,” Metal Finishing, Vol. 98, No. 1, pp. 375-380, 2000.
43. Suh, N.P. and Sin, H.C. "The Genesis of Friction," Wear, Vol.69, pp. 91-114, 1981.
44. Hirst, W., and Lancaster, J.K., "Surface Film Formation and Metallic Wear," Journal of Applied Physics, Vol. 27, pp.1057-1065, 1956.
45. Bowden, F.P., Moore, A.J.W., and Tabor, D., "The Ploughing and Adhesion of Sliding Metals," Journal of Applied Physics, Vol.14, pp.80-91, 1943.
46. Budinski, K.G., "Hardfacing III: The Wear Process," Welding Design and Fabrication, pp.40-47, 1986.
47. Bhushan, B., “Introduction to Tribology,” pp. 424-425, John Wiley & Sons, New York, USA.
48. Akhmatov, A. S., “Molecular Physics of Boundary Friction,” pp. 310-311, 1966.
49. Szpunar, B., Aus, M., Cheung, C., Erb, U., Palumbo, G. and Szpunar, J. A., “Magnetism in Nanostructured Ni-P and Co-W alloys,” Journal of Magnetism and Magnetic Materials, Vol.187, No.3, pp. 325-336, 1998.
50. Shervedani, R.K. and Lasia, A., “ Study of the Hydrogen Evolution Reaction on Ni-Mo-P Electrodes in Alkaline Solutions,” Journal of the Electrochemical Society, Vol. 145, No. 7, pp. 511-519, 1997.
51. Królikowski, A. and Wiecko, A., “Impedance Studies of Hydrogen Evolution on Ni-P Alloys,” Electrochimica Acta, Vol.47, No. 13-14, pp. 2065-2069, May 25, 2002.
52. Carbajal, J.L. and White, R.E., “Electrochemical Production and Corrosion Testing of Amorphous Ni-P,” Journal of the Electrochemical Society, Vol. 135, No. 12, pp. 2952-2957, 1988.
53. Shen, J., Zhang, Q., Li, Z. and Chen, Y., “Chemical Reaction for the Preparation of Ni-P Ultrafine Amorphous Alloy Particles from Aqueous Solution,” Journal of Materials Science Letters, Vol. 15, No. 8, pp. 715-717, 1996.
54. Wu, F.B. and Duh, J.G., “Mechanical Characterization of Ni-P-Based Ternary Coatings by RF Magnetron Sputtering,” Thin Solid Films, Vol. 441, No. 1-2, pp. 165-171, 2003.
55. Habazaki, H., Lu, Y.P., Asami, K. and Hashimoto, K., “Effects of Structural Relaxation and Crystallization on the Corrosion Behavior of Electrodeposited Amorphous Ni-P Alloys,” Corrosion Science, Vol. 32, No. 11, pp. 1227-1235, 1991.
56. Mcmahon, G. and Erb, U., “Structural Transitions in Electroplated Ni-P Alloys,” Journal of Materials Science Letters, Vol. 8, No. 7, pp. 865-868, 1989.
57. Crousier, J., Hanane, Z. and Crousier, J.P., “Cyclic Voltammetry Study of the Ni-P Electrodeposition,” Electrochimica Acta, Vol. 38, No. 2-3, pp. 261-266, 1993.
58. Ross, C.A., Goldman, L.M. and Spaepen, F., “Electrodeposition Technique for Producing Multilayers of Nickel-Phosphorus and Other Alloys,” Journal of the Electrochemical Society, Vol. 140, No. 1, pp. 91-98, 1993.
59. Mukherjee, D. and Rajagopal, C., “Electrodeposition of Amorphous Nickel Alloys,” Metal Finish, Vol. 90, No. 1, pp. 15-19, 1992.
60. Kawashima, A., Lu, Y.P., Habazaki, H., Asami, K. and Hashimoto, K., “Structure and Corrosion Behavior of Electrodeposited Ni-P Alloys,” Corrosion Engineering, Vol. 38, No. 11, pp. 593-598, 1989.
61. Brenner, A., “Electrodepotion of Alloys,” Principles and Practices, Vol 2, New York and London, Academic Press, pp. 457-482, 1963.
62. Narayan, R., and Mungole, M. N., “Electrodeposition of Ni-P Alloy Coatings,” Surface Technology, Vol. 24, No. 3, pp. 233-239, 1985.
63. Rajagopal, C., Mukherjee, D. and Rajagopalan, K. S., “Electrodeposition of Corrosion Resistant Amorphous Nickel Alloys on Mild Steel,” Metal Finishing, Vol. 82, No. 1, pp. 59-65, 1984.
64. Hu, C.C. and Bai A., “Influences of the Phosphorus Content on Physicochemical Properties of Nickel-Phosphorus Deposits,” Materials Chemistry and Physics, Vol. 77, No. 1, pp. 215-225, 2002.
65. Luke, D.A., “Nickel-Phosphorus Electrodeposits,” Transactions of the Institute of Metal Finishing, Vol. 64, No. 3, pp. 99-104, 1986.
66. Patrick, N.G., Snyder, D.D., LaSala, J., Clemens, B., Fuerst, C., “Structure and Crystallization of Nickel-Phosphorus Alloys Prepared by High-Rate Electrodeposition,” Journal of the Electrochemical Society, Vol. 135, No. 6, pp. 1376-1381, 1988.
67. Seo, M.H., Kim, J.S., Hwang, W.S., Kim, D.J., Hwang, S.S. and Chun, B.S., “Characteristics of Ni-P Alloy Electrodeposited From a Sulfamate Bath,” Surface and Coatings Technology, Vol. 176, No. 2, pp. 135-140, 2004.
68. Harris, T.M., and Dang, Q.D., “The Mechanism of Phosphorus Incorporation During the Electrodeposition of Nickel-Phosphorus Alloys,” Journal of the Electrochemical Society, Vol. 140, No. 1, pp. 81-83, 1993.
69. Sridharan, K. and Sheppard, K., “Electrochemical Characterization of Fe-Ni-P alloy Electrodeposition,” Journal of Applied Electrochemistry, Vol. 27, No. 10, pp. 1198-1206, 1997.
70. Crousier, J., Hanane, Z. and Crousier, J.P., “Electrodeposition of Ni-P Amorphous Alloys-A Multilayer Structure,” Thin Solid Films, Vol. 248, No. 1, pp. 51-56, 1994.
71. Morikawa, T., Nakade, T., Yokoi, M., Fukumoto, Y. and Iwakura, C., “Electrodeposition of Ni-P Alloys From Ni-Citrate Bath,” Electrochimica Acta, Vol. 42, No. 1, pp. 115-118, 1997.
72. Kurowski, A., Schultze, J.W. and Staikov, G., “Initial Stages of Ni-P Electrodeposition: Growth Morphology and Composition of Deposits,” Electrochemistry Communications, Vol. 4, No. 7, pp. 565-569, 2002.
73. Ratzker, M., Lashmore D.S. and Pratt, K.W., “Elecrtodeposition and Corrosion Performance of Nickel-Phosphorus Amorphous Alloys,” Plating and Surface Finishing, Vol. 73, No. 9, pp. 74-82, 1986.
74. Zeller, R.L. III and Landau, U., “Electrodeposition of Ni-P Amorphous Alloys. Observations Supporting the Indirect Mechanism of Phosphorus Incorporation,” Journal of the Electrochemical Society, Vol. 139, No. 12, pp. 3464-3469, Dec, 1992.
75. Yue, Z. and Shaomin, Z., “In Situ Surface Raman Study of the Phosphorus Incorporation Mechanism During Electrodeposition of Ni-P Alloys,” Journal of Electroanalytical Chemistry, Vol. 469, No. 1, pp. 79-83, 1999.
76. Hu, C.C. and Bai A., “Optimization of Hydrogen Evolving Activity on Nickel-Phosphorus Deposits Using Experimental Strategies,” Journal of Applied Electrochemistry, Vol. 31, No. 5, pp. 565-572, 2001.
77. Hu, C.C. and Bai A., “Composition Control of Electroplated Nickel-Phosphorus Deposits,” Surface and Coatings Technology, Vol. 137, No. 2-3, pp. 181-187, 2001.
78. Saitou, M., Okudaira, Y. and Oshikawa, W., “Amorphous Structures and Kinetics of Phosphorous Incorporation in Electrodeposited Ni-P Thin Film,” Journal of the Electrochemical Society, Vol. 150, No. 3, pp. C140-C143, 2003.
79. Weil, R., “Origins of Stress in Electrodeposits- 1,” Plating, Vol. 57, No. 12, pp. 1231-1237, 1970.
80. Zeller, R.L. III and Landau, U., “ The Effect of Hydrogen on the Ductility of Electrodeposited Ni-P Amorphous Alloys,” Journal of the Electrochemical Society, Vol. 137, No. 4, pp. 1107-1112, 1990.
81. Staudinger, A. and Nakahara, S., “Structure of the Crack Network in Amorphous Films,” Papermakers Conference, Proceedings of the Technical Association of the Pulp and Paper Industry, pp. 125-133, 1977.
82. Amblard, J., Epelboin, I., Froment, M. and Maurin, G., “Inhibition and Nickel Electrocrystallization,” Journal of Applied Electrochemistry, Vol. 9, No. 2, pp. 233-242, 1979.
83. Paseka, I., “ Hydrogen Evolution Reaction on Amorphous Ni-P and Ni-S Electrodes and the Internal Stress in a Layer of These Electrodes,” Electrochimica Acta, Vol. 47, No. 6, pp. 4551-4558, 2001.
84. Burchardt, T., “Hydrogen Evolution on NiPx Alloys: The influence of Sorbed Hydrogen,” International Journal of Hydrogen Energy, Vol. 26, No. 11, pp. 1193-1198, 2001.
85. Weil, R., Lee, J.H., Kim, I. and Parker, K., “Comparison of Some Mechanical and Corrosion Properties of Electroless and Electroplated Nickel-Phosphorous Alloys,” Plating and Surface Finishing, Vol. 76, No. 2, pp. 62-66, 1989.
86. Sha, W. and Pan, J.S., “Hydrogen Penetration Resistance and Mechanical Properties of Electroplated Ni-P Alloys,” Journal of the Less-Common Metals, Vol. 1, No. 2, pp. L11-L13, 1990.
87. Jeong, D.H., Erb, U., Aust, K.T. and Palumbo, G., “The Relationship Between Hardness and Abrasive Wear Resistance of Electrodeposited Nanocrystalline Ni-P Coatings,” Scripta Materialia, Vol. 48, pp. 1067-1072, 2003.
88. Kobayashi, S., “Effect of Interphase Boundary Connectivity on Fracture Behavior of Ultrafine-Grained Ni-4.4mass%P Alloy,” Scripta Materialia, Vol. 49, No. 1, pp. 99-104, 2003.
89. Mehta, S.C., Smith, D.A. and Erb, U., “Study of Grain Growth in Electrodeposited Nanocrystalline Nickel-1.2 wt.% Phosphorus Alloy,” Journal of Engineering and Applied Science, Vol. A204, No. 1-2, pp. 227-232, 1995.
90. Bredael, E., Blanpain, B., Celis, J.P. and Roos, J.R., “On the Amorphous and Crystalline State of Electrodeposited Nickel-Phosphorus Coatings,” Journal of the Electrochemical Society, Vol. 141, No. 1, pp. 294-299, 1994.
91. Sui, M.L. and Lu, K., “Variation in Lattice Parameters With Grain Size of a Nanophase Ni3P Compound,” Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, Vo. 179-80, No. 1, pp. 541-544, 1994.
92. Lewis, D.B. and Marshall, G.W., “Investigation into the Structure of Electrodeposited Nickel-Phosphorus Alloy Deposits,” Surface & Coatings Technology, Vol. 78, No. 1-3, pp. 150-156, 1996.
93. Itoh, K., Wang, F. and Watanabe, T., “Relationship Between Crystallographic Structure of Electrodeposited Ni-P Alloy Film and Its Thermal Equilibrium Diagram,” Journal of the Japan Institute of Metals, Vol. 65, No. 6, pp. 495-501, 2001.
94. Bai, A., and Hu, C.C., “Effects of Annealing Temperatures on the Physicochemical Properties of Nickel-Phosphorus Deposits,” Materials Chemistry and Physics, Vol. 79, No. 1, pp. 49-57, 2003.
95. Bonino, J. P., Bruet-Hotellaz, S., Bories, C., Pouderoux, P. and Rousset, A., “Thermal Stability of Electrodeposited Ni-P Alloys,” Journal of Applied Electrochemistry, Vol. 27, No. 10, pp. 1193-1197, 1997.
96.Yamamoto, M., Shirai, K. and Watanabe, N., “Process of Structural Transformation of Electrodeposited Amorphous Ni-P Alloy by Heating,” Journal of the Electrochemical Society, Vol. 138, No. 7, pp. 2082-2086, 1991.
97.Yamamoto, M., Shirai, K., and Hiramatsu, K., “Crystallization and Anomalous Thermal Expansion of Amorphous Ni-P Alloy,” Japanese Journal of Applied Physics, Part 2: Letters, Vol. 30, No. 6A, pp. 1032-1035, 1991.
98. Bonino, J.P., Pouderoux, P., Rossignol, C. and Rousset, A., “Effect of Saccharin Addition on the Physico-Chemical Characteristics of Deposits from Electrolytic Nickel-Phosphorus Baths,” Plating and Surface Finishing, Vol. 79, No. 4, pp. 62-66, 1992.
99.Deying, W., Yourong, Xu, Haomin, Z. and Biao, W., “Preparation Technology, Structures and Properties of Ni-P, Ni-P-Si3N4 Amorphous Electrodeposits,” Journal of Functional Materials, Vol. 29, No. 5, pp. 502-506, 1998.
100. Hansen, P.L. and Moller, P., “Microstructure of Electroless Nickel Containing TiC Particles,” Journal of Materials Science Letters, Vol. 9, No. 2, pp. 152-154, 1990.
101. Chen, W.X., Tu, J.P., Gan, H.Y., Xu, Z.D., Wang, Q.G., Lee, J.Y., Liu, Z.L. and Zhang, X.B., “Electroless Preparation and Tribological Properties of Ni-P-Carbon Nanotube Composite Coatings Under Lubricated Condition,” Surface and Coatings Technology, Vol. 160, No. 1, pp. 68-73, 2002.
102. Medeliene, V., “The Influence of B4C and SiC Additions on the Morphological, Physical, Chemical and Corrosion Properties of Ni Coatings,” Surface and Coatings Technology, Vol. 154, No. 1, pp. 104-111, 2002.
103. Cheng, D.H., Xu, W.Y., Hua, L.Q., Zhang, Z.Y. and Wan, X.J., “Electrochemical Preparation & Mechanical Properties of Amorphous Nickel-SiC Composites,” Plating and Surface Finishing, Vol. 85, No. 2, pp. 61-64, 1998.
104. Zhang H., and Zhang M., “The Wear Mechanism of Ni-P-Si3N4 Composite Electrodeposition,” Materials for Mechanical Engineering, Vol. 20, No. 2, pp. 20-22, 1996.
105. Lin, K.L., Hsiuan, W., and Wu, C.D., “The Performance and Degradation Behaviours of the TiAlN/Interlayer Coatings on Drills,” Surface and Coatings Technology, Vol. 89, pp. 279-284, 1997.
106. Chen, C.K., Hon, M.H., “The Morphology and Mechanical Properties of TiN/Ni-P-SiC Hybrid Coatings,” Surface and Coatings Technology, Vol. 155, pp. 214-220, 1997.
107. Lin, Z.C., Lai, W.L., Lin, H.Y., Liu, C.R., “ Residual Stresses with Different Tool Flank Wear Lengths in the Ultra-Precision Machining of Ni-P alloys,” Journal of Materials Processing Technology, Vol. 65, pp. 116-126, 1997.
108. Wang, Y., Tung, S.C., “Scuffing and Wear Behavior of Aluminum Piston Skirt Coatings Against Aluminum Cylinder Bore,” Wear Vol. 225, pp. 1100-1108, 1999.
109. Tung, S.C., Brogan, K., Wang, Y., “Tribological Evaluation of Oil Pump Relief Valve Coatings Compatible with an Aluminum Oil Pump Body,” Wear Vol: 250, pp. 690-705, 2001.
110. Li, S., Jiang, X., Bi, Li, H. S., “Effect Of Environmental Embrittlement on Wear Resistance of Alloys in Corrosive Wear,” Wear Vol. 225-229, pp.1025-1030, 1999.
111. Abdel Hamid, Z., Abou Elkhair, M.T., “Development of Electroless Nickel-Phosphorous Comosite Deposits for Wear Resistance of 6061 Aluminum Alloy,” Materials Letters, Vol. 57, pp. 720-726, 2002.
112. Reddy, V.V.N., Ramamoorthy, B., Kesavan Nair, P., “A Study on the Wear Resistance of Electroless Ni-P Diamond Composite Coatings,” Wear, Vol. 239, p p. 111-116, 2000.
113. León, O.A., Staia, M.H., Hintermann, H.E., “High Temperature Wear of An Electroless Ni-P-BN(H) Composite Coating,” Surface and Coatings Technology, Vol. 163-164, pp. 578-584, 2003.
114. Grove, D.M. and Davis, T.P., “Engineering, Quality and Experimental Design,” published by Longman Scientific & Technical, 1992.
115. Soft of Statistical, “STATISTICA-Release 5.1”, Vol. 4, Experimental design, 1997.
116Straffelini, G., Colombo, D., Molinari, A. Surface Durability of Electroless Ni-P Composite Deposits, Wear, Vol. 236, pp.179-188, 1999.
117. Wang, Y., Brogan, K., Tung, S.C., Wear and Scuffing Characteristics of Composite Polymer And Nickel/Ceramic Composite Coated Piston Skirts Against Aluminum and Cast Iron Cylinder Bores, Wear, Vol. 250-251 , pp. 706-717, 2001.
118. Ger, M.D., Hou, K.H., Wang, L.M. Hwang, B.J., The Friction and Wear of Ni-P-PTFE Composite Deposits Under Water Lubrication, Materials Chemistry and Physics, Vol. 77, pp. 755-764, 2002.
119. Keong, K.G., and Sha, W., Crystallisation and Phase Transformation Behaviour of Electroless Nickel-Hosphorus Deposits and Their Engineering Properties, Surface Engineering, Vol. 18, pp. 329-343, 2002.
120. Balaraju, J.N., Sankara Narayanan, T.S.N., Seshadri, S.K., Electroless Ni-P Composite Coatings, Journal of Applied Electrochemistry, Vol. 33, pp. 807-816, 2003.
121. Lin, C.S., Lee, C.Y., Chen, F.J., and Lia, W.C., Structural Evolution and Internal Stress of Nickel-Phosphorus Electrodeposits,” Journal of The Electrochemical Society, Vol. 152, pp. 370-375, 2005.
122. Park, H.D., Chang, D., Lee, K.H., Kang, S.G., Internal stress in Ni-P Electrodeposits, Planting and Surface Finishing, Vol. 88 pp. 64-66, 2001.
123. Peeters, P., Hoorn, G.V.D., Daenen, T., Kurowski, A., Staikov, G., Properties of electroless and electroplated Ni-P and its application in microgalvanics, Electrochimica Acta, Vol. 47, pp. 161-169, 2001.
124. Yeh, Y.M., Chen, C.S., Tasi M.H., Shyng, Y.C., Lee, S.Y., and Ou, K.L., “Effect of Pulse-Reverse Current on Microstructure and Properties of Electroformed Nickel–Iron Mold Insert, ” Japanese Journal of Applied Physics, Vol. 44, No. 2, pp. 1086-1090, 2005.
125. Kim, D.J., Roh, Y.M., Seo, M.H., Kim, J.S., Effects of the Peak Current Density and Duty Cycle on Material Properties of Pulse-Plated Ni-P-Fe Electrodeposits, Surface and Coatings Technology, Vol. 192, pp. 88-93, 2005.
126. Taylor, A., “X-ray Metallography”, John Wiley and Sons, New York, p. 673, 1961.
127. Apachitei, I., Tichelaar, F.D., Duszczyk, J., Katgerman, L., The Effect of Heat Treatment on the Structure and Abrasive Wear Resistance of Autocatalytic NiP And NiP-Sic Coatings, Surface & Coatings Technology, Vol. 149 pp. 263-278, 2002.
128. Apachitei, I., Duszczyk, J., Autocatalytic Nickel Coatings on Aluminium with Improved Abrasive Wear Resistance, Surface & Coatings Technology, Vol. 132, pp.89-98, 2000.
129. Nieh, T.G., Wang, J.G., Hall-Petch Relationship in Nanocrystalline Ni and Be-B Alloys, Intermetallics, Vol. 13, pp. 377-385, 2005.
130. Hou, K.H., Ger, M.D., Wang, L.M., Ke, S.T., The Wear Behaviour of Electro-Codeposited Ni-SiC Composites, Wear 253, pp. 994-1003, 2002.
131. Constable, C.P., Yarwood, J., Robinson, G., Luo, Q., Lewis, D.B., and Münz, W.D. Investigation of Wear Processes on Worn Tools using Raman Microscopy, Surface Engineering, Vol. 18, pp. 127-132, 2002.
132. Kato, K., Wear in Relation to Friction-A Review, Wear, Vol. 241, pp. 151-157, 2000.
133. Marui, E. Hasegawa, N., Endo, H., Tanaka, K., Hattori, T., “ Research on the Wear Characteristics of Hypereutectoid Steel”, Wear, Vol. 205, pp. 186-199, 1997.
134. Bai, A., and Hu, C.C., Effects of Annealing Temperatures on the Physicochemical Properties of Nickel-Phosphorus Deposits, Materials Chemistry and Physics, Vol. 79, pp. 49-57, 2003.
135. Nishimoto, H., Sugizaki, Y., and Veda, K., JP 04026792, Vol. A2, p. 29, 1992.
136. Chou, M.C., Ger, M.D., Ke, S.T., Huang, Y.R., Wu, S.T., “The Ni-P-SiC composite produced by electro-codeposition,” Materials Chemistry and Physics, Vol. 92, pp. 146-151, 2005.
137. Maurin, G., and Lavanant, A., “Electrodeposition of Nickel/Silicon Carbide Composite Coatings on A Rotating Disc Electrode,” Journal of Applied Electrochemistry, Vol. 25, pp. 1113-1121, 1995.
138. Park, S.Y., Kim, R.H., Kim, J.S., and Kim, C.K., “Surface Force Measurements at a Copper Electrode/Electrolyte Interface,” Journal of Korean Surface Engineering, Vol. 25, pp. 73-78, 1992.
139. Shao, I., Vereecken, P.M., Cammarata, R.R., and Searson, P.C., “Kinetics of Particle Codeposition of Nanocomposites,” Journal of the Electrochemical Society, Vol. 149, pp. C610-C614, 2002.
140. Wang, S.C. and Wei, W.C. J., “Kinetics of Electroplating Process of Nano-Sized Ceramic Particle/Ni Composite,” Materials Chemistry and Physics, Vol. 78, pp. 574-580, 2003.
141. Wang, T., Sorrell, M., Kelly, K., and Ma, E., “Ni-Al2O3 and Ni-Al Composite High Aspect Ratio Microstructures,” Proceedings of SPIE – the International Society for Optical Engineering, Vol. 3512, pp. 344-352, 1998.
142. Zimmerman, A.F., Clark, D.G., Aust, K.T., and Erb, U., “Pulse Electrodeposition of Ni-SiC Nanocomposite,” Mateials Letters, Vol. 52, pp. 85-90, 2002.
143. Helle, K., Walsh, Trans., F., “Electrodeposition of Composite Layers Consisting of Inert Inclusions in A Metal Matrix,” Transactions of the Institute of Metal Finishing, Vol. 75, pp. 53-58, 1997.
144. Shrestha, N.K., Miwa, I., and Saji T. “Composite Plating of Ni/SiC Using a Cationic Surfactant with an Azobenzene Group,” Journal of the Electrochemical Society, Vol. 148, pp. C106-C109, 2001.
145. Biswas, S.K., “Some Mechanisms of Tribofilm Formation in Metal/Metal and Ceramic/Metal Sliding Interactions, Wear, Vol. 245, pp.178-189, 2000.
146.Marui, E., Hasegawa, N., Endo, H., Tanaka, K., Hattori, T., “Research on the Wear Characteristics of Hypereutectoid Steel,” Wear, Vol. 205, pp. 186-199, 1997.
指導教授 鄭銘章(Ming-Chang Jeng) 審核日期 2007-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明