博碩士論文 93323047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.117.166.193
姓名 吳麗雲(Li-Yun Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 圖案化藍寶石基板之濕式蝕刻
(Wet etching of patterned sapphire substrates)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 高功率發光二極體於自然對流環境下之熱流場分析
★ 液珠撞擊熱板之飛濺行為現象分析★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析
★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析★ 交流電發光二極體之接面溫度量測
★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析
★ KY法生長大尺寸氧化鋁單晶之數值模擬分析★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析
★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究★ CZ法生長大尺寸藍寶石單晶之熱流場與溶質數值模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
本論文主要探討使用化學濕式蝕刻法來蝕刻藍寶石(sapphire)基板,其優點在於其製程簡單、成本低廉、且蝕刻速度快,雖然藍寶石基板具有極佳物理及化學穩定性,不易和化學溶液起反應,但是本研究已成功的蝕刻藍寶石基板,且找到最佳之化學溶液配比,不僅蝕刻速率快且表面品質佳。影響藍寶石基板的蝕刻速率有化學溶液配比、溫度、遮罩圖案方向、藍寶石基板之晶格方向等因素,本文分別探討不同參數對蝕刻速率及表面品質之影響,並且定義出蝕刻的機制。在圖案化藍寶石基板上成長氮化鎵發光二極體結構後,結果顯示,氮化鎵磊晶薄膜品質有明顯提升。在光學特性方面:使用圖案化藍寶石基板成長之氮化鎵薄膜,和沒有製作圖案化藍寶石基板比較:發光效率也提升不少,證實圖案化藍寶石基板除了幫助磊晶品質改善之外,基板上之規則圖案破壞了活性層產生之光線的全反射現象,可以有效提高LED 的發光效率。
摘要(英) Abstract
In this study, we employed a chemical wet etching method in building the trench pattern on the sapphire substrates. Compared to dry etching,
wet etching had several advantages, such as simpler process, higher etching rate and throughput, and the cost is much lower. Sapphires had excellent physical and chemical stability, and it’s hard to react with the
chemical solutions. Here we had already succeeded in etching the sapphire substrates, and finding out the suitable chemical solutions and working temperature to obtain the optimal etching rate and surface quality.
We also discussed the relationship between etching morphology and sapphire orientations.
GaN light-emitting diodes were deposited on pattern and non-pattern sapphire substrates to reveal the thin film quality and optical performance. Experimental results show the treading dislocation density of epitaxy
layer was decreased obviously. A further Photoluminescence(PL)was measured and peak intensity was found to enlarge substantially for
the LED sample on the pattern sapphire. This could attribute to the reduction of dislocation density, and the multiple scattering of the
emission light at the GaN/patterned sapphire interface changes the angle of propagation of the confined light.
論文目次 目錄 頁次
摘要············································I
英文摘要······································· II
致謝·········································· III
目錄··········································· IV
圖表目錄····································· VIII
第一章、序論·····································1
1.1 前言······································1
1.2 材料簡介··································5
1.2.1 氧化鋁單晶······························5
1.2.2 藍寶石基板與氮化鎵磊晶薄膜結構··········5
1.2.3 貫穿式差排形成機制與影響················7
1.3 藍寶石之蝕刻技術························· 12
1.3.1 乾式蝕刻技術··························· 12
1.3.2 濕式蝕刻技術··························· 13
1.3.3 製作圖案化藍寶石之目的··················15
1.4 光學理論基礎······························15
1.5 文獻回顧··································17
1.5.1 藍寶石蝕刻之相關文獻··················· 17
1.5.2 圖案化藍寶石基板之相關文獻············· 18
1.6 研究動機與目的····························20
第二章、實驗方法與檢測························21
2.1 實驗設備··································21
2.1.1 電漿輔助化學化學氣相沉積系統··········· 21
2.1.光罩對準曝光機··························· 22
2.1.3 高密度電漿蝕刻系統······················22
2.1.4 自動控制型高溫加熱爐·········· 23
2.2 實驗流程································· 25
2.3 圖案化藍寶石基板之製作····················30
2.3.1 遮罩材料之選擇························· 30
2.3.2 製作二氧化矽遮罩層····················· 30
2.3.3 藍寶石之濕式蝕刻······················· 31
2.4 材料檢測··································32
2.4.1 掃描式電子顯微鏡······················· 32
2.4.2 原子力顯微鏡分析技術··················· 33
2.4.3 光激發光光譜分析······················· 34
第三章 結果與討論··············· 38
3.1 濕式蝕刻之機制····························38
3.2 濕式蝕刻製程參數與蝕刻速率之關係··········39
3.2.1 蝕刻液濃度配比對蝕刻速率的影響··········46
3.2.2 最高藍寶石蝕刻製程條件··················48
3.2.3 藍寶石蝕刻速率與二氧化矽之選擇比········48
3.3 圖案化藍寶石基板對磊晶品質及發光效率之影響57
第四章 結論···················61
參考文獻······································63
參考文獻 參考文獻
【1】 S. K. Hong , B. J. Kim, H. S. Park, Y. Park, S. Y. Yoon and T. I.
Kim, ‘‘Evaluation of nanopipes in MOCVD grown (0001)
GaN/Al2O3 by wet chemical etching’’, J. Crysl. Growth. 191,
275(1998).
【2】 S. Nakamura, T. Mukai and M. Senoh, ‘‘Candela-class high
brightness InGaN/AlGaN double heterostructure blue light
emitting diodes ’’, Appl. Phys. Lett. 641, 687(1994).
【3】 C. C. Sun, C. Y. Lin, and T. X. Lee, ‘‘Enhancement of light
extraction of GaN-based light-emitting diodes with a
microstructure array’’ , Opt. Eng. 43, 1700(2004).
【4】 C. D. Thurmond and R. A. Logan, J. Electrochem. Soc. 199,
622(1972).
【5】 B. Heying , X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P.
Keller, S. P. Denbaars and J. S. Speck, Appl. Phys. Lett. 68,
643(1996).
【6】 S. J. Kim, ‘‘Vertical electrode GaN-based light-emitting diode
fabricated by selective wet etching technique’’, Jpn. J. Appl.
Phys. 44, 2921(1996).
【7】 S. J. Kim, Y. S. Choi1, Y. H. Han1, C. Y. Kim1, ‘‘Vertical chip
of GaN-based light-emitting diode formed on sapphire
substrate ’’, Phys. Stat. Sol. 202, 2034(2005).
【8】 S. J. Kim, ‘‘Improvement of GaN-based light-emitting diode by
indium-tin-oxide transparent electrode and vertical electrode ’’,
IEEE Photonic Technol. Lett. 17, No. 8(2005).
【9】 S. J. Kim, ‘‘Vertical chip of GaN-based blue light-emitting
diode’’, Solid-State Electron. 49, 1153(2005).
【10】 Bhattacharya, ‘‘Semiconductor Optoelectric Devices’’, Prentice
Hall.
【11】 D.Hull, ‘‘Introduction to Dislocations’’, 2nd Edition. Pergamon
Press, Oxford.
【12】 X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M.
Petroff, S. P. DenBaars, J. S. Speck and S. J. Rosner, Appl. Phys.
Lett. 72, 692(1998).
【13】 S. Keller, G. Parish, J. S. Speck, S. P. DenBaars and U. K.
Mishra, Appl. Phys. Lett. 77, 2665(2000).
【14】 J. W. Matthews, ‘‘Epitaxial Growth’’, Academic, New York.
【15】 M. Kneissl, T. L. Paoli, P. Kiesel, D. W. Treat,M. Teepe, N.
Miyashita, Appl. Phys. Lett. 80, 3283(2002).
【16】 Y. J. Sung, H. S. Kim, Y. H. Lee, J. W. Lee, Y. J. Park, ‘‘High
rate etching of sapphire wafer using Cl2/BCl3/Ar inductively
coupled plasmas’’, Mater. Sci. Eng. B-Solid State Mater. Adv.
Technol. 82, 50 (2001).
【17】 D. W. Kim, C. H. Jeong, K. N. Kim, H. Y. Lee, H. S. Kim, Y. J.
Sung, G. Y. Yeom, ‘‘High rate sapphire (Al2O3) etching in
inductively coupled plasmas using axial external magnetic field’’,
Thin Solid Films. 435, 242(2003).
【18】 D. W. Kim , C. H. Jeong, K. N. Kim, H. Y. Lee , H. S. Kim, Y. J.
Sung, G. Y. Yeom, ‘‘High rate sapphire (Al2O3) etching in
inductively coupled plasmas using axial external magnetic field’’,
Thin Solid Films. 435, 242(2003).
【19】 C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J.
Park, G. Y. Yeom, ‘‘Dry etching of sapphire substrate for device
separation in chlorinebased inductively coupled plasmas’’, Mater.
Sci. Eng. B93, 60 (2002).
【20】 X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, S. J. Chu,
‘‘Femtosecond pulse laser ablation of sapphire in ambient air’’,
Appl. Surf. Sci. 228, 221(2004).
【21】 S. I. Dolgaev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, G. A.
Shafeev, ‘‘Fast etching and metallization of via-holes in sapphire
with the help of radiation by a copper vapor laser’’, Appl. Surf.
Sci. 109, 201(1997).
【22】 王曉輝, 劉祥林, 汪度, ‘‘用於GaN生長的藍寶石襯底化學拋
光研究’’, 半導體學報, 第18卷, 第11期(1997).
【23】 F. Dwikusuma, D. Saulys, and T. F. Kuecha, ‘‘Study on
Sapphire Surface Preparation for III-Nitride Heteroepitaxial
Growth by Chemical Treatments’’, J. Electrochem. Soc. 149.
603(2002).
【24】 日商日亞化學股份有限公司, ‘‘具備凹凸成型基板之半導體
發光元件’’. 發明專利,案號091116475(2002).
【25】 K. Tadatomo, H. Okagwa, Y. Ohuchi, T. Tsunekawa, Y. Imada,
M. Kato, T. Taguchi, Jpn. J.Appl. Phys. 40, 583(2001).
【26】 M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S.
Sonobe, K. Deguchi, M. Sano, T. Mukai, Jpn. J. Appl. Phys. 41,
1431(2002).
【27】 A. Bell, R. Liu, F. A. Ponce, H. Amano, I. Akasaki and D.
Cherns, Appl. Phys. Lett. 82, 3(2003).
【28】 S. J. Chang, Y. C. Lin , Y. K. Su, C. S. Chang, T. C. Wen , S. C.
Shei, J. C. Ke, C. W. Kuo, S. C. Chen, C. H. Liu, ‘‘Nitride-based
LEDs fabricated on patterned sapphire substrates’’, Solid State
Electron. 47, 539(2003).
【29】 Y. P. Hsua, S. J. Changa, Y. K. Su, J. K. Sheu, C. T. Lee, T. C.
Wen, L. W. Wu, C. H. Kuo, C. S. Chang, S. C. Shei, ‘‘Lateral
epitaxial patterned sapphire InGaN/GaN MQW LEDs’’, J. Crysl.
Growth. 261. 466(2004).
【30】 W. K. Wang, D. S. Wuu, S. H. Lin, Pin Han, R. H. Horng, M. J.
Jou, Y. H. Yu, ‘‘Efficiency Improvement of Near-Ultraviolet
InGaN LEDs Using Patterned Sapphire Substrates’’, IEEE J.
Quantum Electron. 41(2005).
【31】 D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W.
Y. Lin, and J. S. Fang, ‘‘Enhanced Output Power of
Near-Ultraviolet InGaN–GaN LEDs Grown on Patterned
Sapphire Substrates’’, IEEE Photonics Technol. Lett. 17 (2005).
【32】 Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J.
Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, ‘‘GaN-Based LEDs
With Al-Deposited V-Shaped Sapphire Facet Mirror ’’, IEEE
Photonics Technol. Lett. 18 (2006).
【33】 施文忠, 國立虎尾科技大學光電與材料科技研究所碩士論文
( 2004).
【34】 劉哲銘, 國立中央大學機械工程研究所博士論文(2006).
【35】 S. M, ‘‘Physics of Semiconductor Devices, 2nd’’, Wiley Kaldis.
【36】 汪建民, ‘‘材料分析’’, 中國材料科學學會(1998).
指導教授 陳志臣(J. C. Chen) 審核日期 2006-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明