參考文獻 |
Bédat, B. & Cheng, R. K. 1995 Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100, 486-494.
Bowman, C. T. 1992 Control of combustion-generated nitrogen oxide emission: technology driven by regulation. Proc. Combust. Inst. 24 859-878.
Bradley, D. 1992 How Fast Can We Burn? Proc. Combust. Inst. 24, 247-262.
Carrette, L., Friedrich, K. & Stimming, U. 2001 Fuel cells–fundamentals and applications. Fuel Cells 1, 5-37.
Chang, N. W., Shy, S. S., Yang, S. I. & Yang, T. S. 2001 Spatial resolved flamelet statistics for reaction rate modeling using premixed methane-air flames in a near-homogeneous turbulence. Combust. Flame 127, 1880-1894.
Chen, C. K., Lau., K. S., Chin, W. K. & Cheng, R. K. 1992 Freely propagation open premixed turbulent flames stabilized by swirl. Proc. Combust. Inst. 24, 511-518.
Cheng, R. K. 1995 Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl. Combust. Flame 101, 1-14.
Cheng, R. K., Fable, S. A., Schmidt, D., Arellano, L. & Smith, K. O. 2001 Development of a low swirl injector concept for gas turbines. Proc. of International Joint Power Conference, New Orleans, Louisiana, USA, June 4-7.
Cheng, R. K., Yegian, D. T., Miyasato, M. M., Samuelsen, G. S., Benson, C. E., Pellizzari, R. & Loftus, P. 2000 Scaling and development of low-swirl burners for low emission furnaces and boilers. Proc. Combust. Inst. 28, 1305–1313.
Cho, P., Law, C. K., Hertzbeqrg, J. H. & Cheng, R. K. 1986 Structure and propagation of turbulent premixed flames stabilized in a stagnation flow. Proc. Combust. Inst. 21, 1493-1499.
Claypole, T. C. & Syred, N. 1980 The effect of swirl burner aerodynamics on NOx formation. Proc. Combust. Inst. 18, 81-89.
Drell, I. L. & Belles, F. E. 1957 Survey of hydrogen combustion properties. NACA Research Memorandum Report 1383.
Drift, A. V. D., Yjeng, S. L., Beckers, G. J. J. & Beesteheerde, J. 1996 Low-NOx hydrogen burner. Int. J. Hydrogen Energ. 21, No. 6, 445-449.
Energy Information Administration 2004 International Energy Outlook. Rep. No. DOE/EIA-0484 (http://www.eia.doe.gov/oiaf/ieo).
Friedman, R. 1949 The quenching of laminar oxyhydrogen flames by solid surfaces. Third Symposium on Combustion and Flame and Explosion Phenomena. 110-120.
Gupta, A.K., Lilley, D.G. & Syred, N. 1984 Swirl Flows. Abacus Press, Tunbridge Wells, England.
Heinzel, A., Roes, J. & Brandt, H. 2005 Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas. J. Power Sources 145, 312-318.
IDATECH Co., Animation of IdaTech's fuel cell processor. http://www.idatech.com/technology/fuel_proc_anim.html.
Ishizuka, S. 1984 On the behavior of premixed flames in a rotating flow field: establishment of tubular flames. Proc. Combust. Inst. 20, 287-294.
Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O. & Cheng, R. K. 2005 A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc. Combust. Inst. 30, 2867-2874.
Law, C. K., Zhu, D. L. & Yu, G. 1986 Propagation and extinction of stretched premixed flames. Proc. Combust. Inst. 21, 1419-1426.
Mathiak, J., Heinzel, A., Roes, J., Kalk, T., Kraus, H. & Brandt, H. 2004 Coupling of a 2.5 kW steam reformer with a 1 kW PEM fuel cell. J. Power Sources 131, 112-119.
Plessing, T., Kortshik, C., Peters, N., Mansour, M. S. & Cheng, R. K. 2000 Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proc. Combust. Inst. 28, 359-366.
Shepherd, I. G. & Cheng, R. K. 2001 The burning rate of premixed flames in moderate and intense turbulence. Combust. Flame 127, 2066-2075.
Shy, S. S., Lee, E. I., Chang, N. W. & Yang, S. I. 2000a Direct and indirect measurements of flame surface density, orientation, and curvature for premixed turbulent combustion modeling in a cruciform burner. Proc. Combust. Inst. 28, 383-390.
Shy, S. S., Lin, W. J. & Peng, K. Z. 2000b High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner. Proc. Combust. Inst. 28, 561-568.
Shy, S. S., Lin, W. J. & Wei, J. C. 2000c An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion. Proc. R. Soc. (London) A 456, 1997-2019.
Syred, N. & Beer, J. M. 1974 Combustion in swirling flows: a review. Combust. Flame 23, 143-201.
Vagelopoulos, C. M., Egolfopoulos, F. N. & Law, C. K. 1994 Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Proc. Combust. Inst. 25, 1341-1347.
Veziroglu, T. N. 2000 Quarter century of hydrogen movement 1974-2000. Int. J. Hydrogen Energ. 25, 1143-1150.
Yang, T. S., Shy, S. S. & Chyou, Y. P. 2005 Spatiotemporal intermittency measurements in a gas-phase near-isotropic turbulence using high-speed DPIV and wavelet analysis. J. Mech. 21, 157-169.
Yegian, D. T. & Cheng, R. K. 1998 Development of lean premixed low-swirl burner for low NOx practical application. Combust. Sci. Tech. 139, 207-227.
Yetter, R. A., Glassman, I. & Gabler, H. C. 2000 Asymmetric whirl combustion: a new low NOx approach. Proc. Combust. Inst. 28, 1265-1272.
日本富士電池,燃料電池發電系統。http://www.fesys.co.jp/sougou/seihin/p27/pdf/K106b.pdf
尹偉光 1996 預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及其未來發展。 碩士論文,國立中央大學機械工程研究所。
李國源 2002 停滯流燃氣噴注漩渦燃燒器之流場與火焰研究。 碩士論文,國立成功大學航太與太空工程研究所。
林文基 1999 甲烷與丙烷預混紊流燃燒速度的量測。 碩士論文,國立中央大學機械工程研究所。
林孟良 1998 氣態預混紊流燃燒速度量測於一近似均勻等向性紊流場。 碩士論文,國立中央大學機械工程研究所。
彭光榮 2000 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅。 碩士論文,國立中央大學機械工程研究所。
魏建樟 1999 應用雷射斷層攝影術探討預混紊焰傳播。 碩士論文,國立中央大學機械工程研究所。 |