以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:25 、訪客IP:3.139.87.113
姓名 楊仁泓(Jen-hung Yang) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 微陽極導引電鍍法製備微析物之局部電場強度分析
(Analysis of the local electric-field strength in the fabrication of micro-deposits by intermittent micro anode guided electroplating)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本論文主旨在利用微陽極導引電鍍法(Micro-Anode Guided Electroplating)以間歇移動方式來析鍍微結構物,論文研究重點在(1)微柱底部之局部性,(2)微柱之形貌,以及(3)微柱之縱剖面探討等三個主題。
研究結果如下:
(1) 微柱底部之局部性研究:
在間歇式MAGE製程中,採用單步、步進的陽極移動方式來進行微電鍍,析鍍所得結構物,其底部在基材上圍繞成一個圓形面積,藉由此底部環繞面積的直徑,可以用來定義微柱之局部性(Localization)。以間歇式MAGE單步製程析鍍所得之山丘狀微結構物,其底部圍繞面積之直徑(局部性)隨施加偏壓、兩極間之間距的增加而增加。若以間歇式MAGE步進製程電鍍微柱,其底部直徑會隨著微柱的成長而逐漸增加至一臨界值,微柱超過此臨界高度值後,直徑就不會再繼續增加,此臨界直徑(臨界局部性)的大小取決於施加偏壓以及兩極間的間距。本論文利用有限元素法來分析微電鍍之電場分佈,並建構模型來說明其結果。
(2) 微柱之形貌研究:
以間歇式MAGE製備銅微柱,析鍍物之外觀形貌與內部結構隨著製程參數的改變而有所不同。若析鍍偏壓在4.0V,兩極間距在2μm/step下進行微電鍍,則析鍍出中空管狀結構。若析鍍偏壓從4.0降至3.2V,兩極間距由2增加至25μm/step,則析鍍出一表面光滑組織緻密之實心微柱。在不同製程參數下進行微電鍍,將析鍍出之結構物以有限元素法進行分析,並建立模型定義出一(Ee/Et)電場比例,當此比值大於1.5,析鍍出管狀結構,若此比值小於1.0,則析鍍出實心之柱狀結構。
(3) 沈積微柱之縱剖面研究結果:
微柱之縱剖面可以顯示內部結構。以間歇式MAGE製程製備微柱時,若兩極間固定間距在2μm/step,偏壓施加在3.2~3.6V,會製備出表面粗糙,內部呈孔洞狀鬆散結構。若施加偏壓介於3.6~3.8V時,則析鍍出管壁細緻之管狀結構。當偏壓大於4.0V,則析鍍表面粗糙之管狀結構。
摘要(英) Micrometer metallic pillars were fabricated by the intermittent micro-anode guided electroplating (MAGE) process in order to study (1) the localization of the pillar bottom, (2) the surface morphology of the pillars and (3) the cross-sectional structure along the axis of the micro pillars. The results and contributions of these studies were summarized as follows.
(1). Two modes (i.e., one-step and multi-step) of the MAGE process were employed to explore the localization of localized electrochemical deposition (LECD). Circular area around the pillar bottom on the substrate was measured and its diameter was estimated to define the localization of the micro pillars. A tiny hillock was fabricated in one-step MAGE process. The diameter (i.e., localization) of the circle around the pillar bottom increases with increasing the electric biases between the micro anode and the substrate. In the multi-step MAGE process, the diameter of the circle increases with increasing the pillar height and levels off at a critical localization (Dc). The magnitude of the critical localization was found to be a function of electric bias and the initial gap between the micro anode and the pillar top deposited previously. The less the electric bias and the initial gap in multi-step MAGE, the diameter of the circular area around the pillar bottom is smaller. A model of micro-electroplating is proposed based on an electric strength ratio (i.e., Ecore/Ep) between the conical core strength (Ecore) to the conical periphery strength (Ep) and the electric voltage responsible for the critical localization. The strength ratio can be used as a criterion to predict whether a localization diameter increases or not.
(2). Micrometer copper features fabricated by intermittent MAGE revealed different structures depending upon the experimental conditions. A hollow micro tube was developed at 4.0 V with an initial distance of 2μm/step. With decreasing the voltage from 4.0 to 3.2 V but increasing the initial distance from 2 to 25μm/step, a dense copper column with a smooth surface was formed instead of a rough-surfaced tube. The dense column was based on a substrate where revealed a larger area of circle around the column compared to that for the hollow tube. Finite element analysis is useful to establish a model for illustrating different morphologies of the micro features attained from MAGE process. According to this model, the structure is determined by the ratio (i.e., Ee/Et) of field strength at the periphery (Ee) to that in the center (Et) of the location. Hollow tubes were fabricated at a ratio higher than 1.5; dense pillars were attained at a ratio less than 1.0.
(3). The internal structure of the micro feature was illustrated by examining the cross-sectional morphology along its axis. Fixing an initial inter-electrode distance of 2μm/step, the intermittent-MAGE conducted at 3.2 to 3.6V led to a micro structure with rough surface and porous internal. With increasing the voltage from 3.6 to 3.8V, a micro tube with rough surface was fabricated. Up to 4.0V, an imperfect micro tube with highly rough surface was formed. The mechanism of LECD under different conditions is illustrated by a sequence of models proposed.
關鍵字(中) ★ 有限元素分析
★ 銅微管
★ 銅微柱
★ 微結構
★ 微陽極導引電鍍
★ 局部電化學沈積關鍵字(英) ★ Micro copper tube
★ Micro copper column
★ Micrometer structure
★ Micro-anode guided electroplating
★ Localized electrochemical deposition (LECD)
★ Finite element analysis論文目次 目 錄
中文摘要 i
英文摘要 iii
致謝 vi
目錄 vii
表目錄 x
圖目錄 xi
符號表 xv
一、前言 1
1.1 局部電鍍製程之發展 1
1.2 研究動機與目的 2
1.3 論文架構 4
二、 基礎原理與文獻回顧 6
2.1 局部電鍍原理 6
2.2 國內外微電鍍之發展 7
2.2.1 國外期刊文獻 7
2.2.2 國內相關研究 10
2.3 局部電鍍之電場與電力線觀念 11
2.4 微電極的特性與限制 12
2.5 有限元素法模擬概念 14
三、 實驗方法與進行步驟 15
3.1 實驗流程 15
3.2 實驗前製程 15
3.2.1 微陽極製作方式 16
3.2.2 陰極基材製作方式 16
3.2.3 電解槽之製作 17
3.2.4 鍍液調配 18
3.2.4.1 硫酸銅鍍液配製 18
3.2.4.2 瓦茲鍍液配製 18
3.3 實驗方法 19
3.3.1 間歇式微陽極導引電鍍實驗 19
3.3.2 電流訊號之量測 22
3.3.3 微柱縱剖面之製作 22
3.3.4 ANSYS電場模擬 23
3.4 實驗及檢測儀器簡介 24
3.4.1 實驗儀器 24
3.4.2 檢測儀器 25
第四章 實驗結果與討論 27
4.1 微柱局部性之研究 27
4.1.1 單步(one-step)微電鍍製備微山丘狀結構之覆蓋範圍直徑
28
4.1.1.1 單步微電鍍中偏壓、間距對於析鍍物覆蓋範圍直徑的影響
28
4.1.1.2 單步沈積析鍍物之形貌 30
4.1.2 步進(Step-by-step)微電鍍製備銅微柱覆蓋範圍直徑之結果與討論
33
4.1.2.1 步進析鍍實驗中偏壓、間距對於析鍍物覆蓋範圍直徑的影響
33
4.1.2.2 間歇式微陽極導引電鍍製程之局部性模型建立
37
4.1.2.3 臨界析鍍電場強度之半定量分析模擬 38
4.2 微柱整體沈積形貌之研究 40
4.2.1 偏壓、間距對於沈積初期山丘狀形貌之影響 41
4.2.2 間歇式微陽極導引電鍍沈積微柱之尺寸與相關電場之模型定義
43
4.2.3 間歇式微陽極導引電鍍以不同製程條件析鍍微柱之相關直徑尺寸
44
4.2.4 間歇式微陽極導引電鍍沈積微柱形貌之均勻性與收斂性
45
4.2.5 間歇式微陽極導引電鍍沈積微柱形貌模型之建立 47
4.2.6 影響析鍍形貌之電場強度半定量分析模擬 49
4.3 管狀沈積微柱之縱剖面觀察分析 51
4.3.1 偏壓對於管狀沈積微柱之影響 51
4.3.2 管狀沈積微柱之沈積機制探討 52
第五章 結論 56
第六章 未來展望 59
第七章 參考文獻 61
個人簡歷 105
表 目 錄
表3-1 硫酸銅鍍液配方 65
表3-2 瓦茲鍍鎳鍍液配方 65
表4-1 單步析鍍實驗中,偏壓2.9~3.2V的條件下,兩極間間距與析鍍物覆蓋範圍直徑(μm)之相對關係 66
表4-2單步析鍍實驗中,偏壓2.9~3.2V的條件下,兩極間間距與平均析鍍電流(mA)之相對關係 67
表4-3 偏壓2.9~3.2V、每步間距5μm,以步進方式沈積,其上升間距與析鍍物覆蓋範圍直徑(μm)的相對關係表 68
表4-4 偏壓2.9~3.2V、每步間距10μm,以步進方式沈積,其上升間距與析鍍物覆蓋範圍直徑(μm)的相對關係 69
表4-5 偏壓3.0~3.2V、每步間距25μm,以步進方式沈積,其上升間距與析鍍物覆蓋範圍直徑(μm)的相對關係 70
表4-6 偏壓2.8~4.0V,以不同兩極間間距下,以步進方式沈積銅微柱之臨界直徑(Dc, μm)值 71
表4-7 偏壓2.8~4.0V,以不同兩極間間距下,以步進方式沈積銅微柱之向上成長直徑(Dg, μm)值 72
表4-8 偏壓2.8~4.0V,以不同兩極間間距下,以步進方式沈積銅微柱之固定成長直徑(ψc, μm)值 73
圖 目 錄
圖2-1 局部成長反應模型 74
圖3-1 間歇式MAGE製程製備微析物之電場強度分析研究之實驗流程圖 75
圖3-2 微陽極製作流程圖 76
圖3-3 陰極底材製作流程圖 76
圖3-4 整體實驗儀器裝置之示意圖 77
圖3-5 間歇式微陽極導引電鍍製程示意圖 78
圖3-6 微柱縱剖面試片之製作流程圖 79
圖4-1 間歇式MAGE製程在不同製程參數下製備銅微柱之SEM影像圖,(a) 3.0V, 5μm/step、(b) 3.1V, 10μm/step以及(c) 3.2V, 25μm/step 80
圖4-2 單步間歇式MAGE製程在不同製程參數下析鍍物之SEM影像圖(×400) 80
圖4-3 單步間歇式MAGE製程,施加偏壓在2.9~3.2V時,兩極間間距與單步山丘狀銅沈積物局部直徑範圍之關係圖 81
圖4-4 單步間歇式MAGE製程,施加偏壓在2.9~3.2V時,兩極間間距為(a)5μm、(b)10μm、(c)25μm以及(d)50μm,其析鍍電流與單步析鍍時間之關係圖 82
圖4-5 單步間歇式MAGE製程,在不同製程參數下沈積山丘狀銅沈積物之平均電流圖 83
圖4-6 間歇式MAGE製程,以施加偏壓2.9V、每步間距5μm,以步進方式進行沈積(a) 5μm~(i) 45μm高度銅析鍍物之SEM影像圖 84
圖4-7 間歇式MAGE製程,固定每步間距5μm,不同施加偏壓條件下,銅微柱成長高度與底部沈積直徑之關係圖 85
圖4-8 間歇式MAGE製程,以施加偏壓2.9V、每步間距10μm,以步進方式進行沈積(a) 10μm~(g) 70μm高度銅析鍍物之SEM影像圖 86
圖4-9 間歇式MAGE製程,固定每步間距10μm,不同施加偏壓條件下,銅微柱成長高度與底部沈積直徑之關係圖 87
圖4-10 間歇式MAGE製程,以施加偏壓2.9V、每步間距25μm,以步進方式進行沈積(a) 25μm~(h) 200μm高度銅析鍍物之SEM影像圖 88
圖4-11 間歇式MAGE製程,固定每步間距25μm,不同施加偏壓條件下,銅微柱成長高度與底部沈積直徑之關係圖 89
圖4-12間歇式MAGE製程,在不同的製程參數下沈積銅微柱,其局部直徑隨著沈積高度變化之趨勢圖 90
圖4-13 間歇式MAGE製程,在不同製程參數下,(a)沈積銅微柱之臨界局部直徑(Dc)以及(b)臨界高度(Hc)之關係圖
91
圖4-14 間歇式MAGE製程製備銅微柱由第1步直至(n+1)步之概略沈積模型。D1,D2..Dn以及H1,H2..Hn分別表示在各步階時其局部沈積直徑與相對應之沈積高度
92
圖4-15 沈積銅微柱已達臨界局部直徑與臨界高度時,對應至固定直徑(ψc)之電場強度(Ecore)以及對應至臨界局部直徑(Dc)周圍處之電場強度(Ep)之概略模型圖
93
圖4-16 間歇式MAGE製程在不同兩極間間距下製備銅微柱,其電場強度比例(Ecore/Ep)與施加偏壓之關係圖 94
圖4-17 間歇式MAGE製程在(a)4.0V,2μm/step、(b)3.6V,5μm/step、(c)3.2V,10μm/step 以及(d)3.2V,25μm/step參數下製備銅微柱之SEM圖 95
圖4-18 間歇式MAGE製程在(a)4.0V,2μm/step、(b)3.6V,5μm/step、(c)3.2V,10μm/step 以及(d)3.2V,25μm/step參數下製備銅微山丘狀結構之SEM圖,銅微山丘狀結構之高度為50μm 96
圖4-19 間歇式MAGE製程在(a) 4.0V,2μm/step and (b) 3.2V,25μm/step參數下,在不同製程步階時沈積銅微結構之SEM圖,圖中沈積高度分別為50、100 and 200μm
97
圖4-20 間歇式MAGE製程製備銅微柱,概略的模型來說明臨界局部直徑(Dc)、向上成長直徑(Dg)、固定成長直徑(ψc)、臨界高度(Hc)、頂端電場(Et)、核心電場(Ecore)、微陽極邊緣垂直作用電場(Ee)以及周圍電場強度(Ep)之對應位置圖
98
圖4-21 間歇式MAGE製程,在不同製程參數下沈積銅微柱之(a)臨界局部直徑(Dc)、(b)向上成長直徑(Dg)以及(c)固定成長直徑(ψc)之關係圖 99
圖4-22 間歇式MAGE製程在不同參數下製備銅微柱之(a)均勻性(ψc/Dg)以及(b)收斂性(ψc/Dc)之關係圖
100
圖4-23 間歇式MAGE製程在不同製程參數下製備銅微柱,不同沈積形貌之模型示意圖 101
圖4-24 間歇式MAGE製程,在不同製程參數下,電場比值(Ee/Et)之關係圖 102
圖4-25 間歇式MAGE製程在兩極間間距為2μm/step條件下,以不同施加偏壓(3.2~3.8V)製備銅微柱之SEM影像圖 103
圖4-26 間歇式MAGE製程製備管狀微柱之沈積模型示意圖 104
參考文獻 [1] M. Madou, “Fundamentals of Microfabrication”, CRC Press, Boca Raton, New York (1997).
[2] L. T. Romankiw, “Electrodeposition technology theory and practice”, IBM T. J. Watson Research Center Yorktown Heights. New York (1986).
[3] L. T. Romankiw, “A Path: From Electroplating Through Lithographic Masks in Electronics to LIGA in MEMS,” Electrochimica Acta. 41, (1997), 2985-3005.
[4] J. D. Madden, S. R. Lafontaine, and I. W. Hunter, “Fabrication by Electrodeposition: Building 3D Structures and Polymer Actuators,” Sixth International Symposium on Micro Machine and Human Science, (1995). IEEE, pp. 77-81.
[5] J. D. Madden, and I. W. Hunter, “Three-Dimensional Microfabrication by Localized Electrochemical Deposition,” Journal of Microelectromechanical System, Vol. 5, No. 1, March (1996), pp.24-32.
[6] E. M. El-Giar, U Cairo, and D. J. Thomson, “Localized Electrochemical Plating of Interconnectors for Microelectronics,” Proceedings of 1997 Conference on Communications, Power and Computing; Winnipeg, MB; May 22-23, (1997), pp.327-332.
[7] E. M. El-Giar, R. A. Said, G. E. Bridges, and D. J. Thomson, “Localized Electrochemical Deposition of Copper Microstructures,” Journal of the Electrochemical Society, 147 (2) (2000), pp. 586-591.
[8] R. A. Said, “Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modeling”, Nanotechnology 14 (2003) 523–31.
[9] R. A. Said, “Adaptive tip-withdrawal control for reliable micro-fabrication by localized electro-deposition”, IEEE J. MEMS 13 (2004) 822–32.
[10] S. K. Seol et al, “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition Electrochem. Solid-State Lett. 7–9 (2004) C95–7.
[11] S. K. Seol, A. R. Pyun, Y. Hwu, G. Margaritondo and J. H. Je, “ Localized electrochemical deposition of copper monitored using real-time x-ray microradiography”, Adv. Funct. Mater. 15 (2005) 934–7.
[12] S. K. Seol, J. T. Kim, J. H Je, Y. Hwu and G. Margaritondo, “Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition”, Electrochem. Solid-State Lett. 10 (2007) C44-C46.
[13] S. H. Yeo, J. H. Choo and K. S. Yip, “Localized electrochemical deposition—the growth behavior of nickel micro-columns”, Proc. SPIE 4174 (2000) 30–9.
[14] S. H. Yeo, J. H. Choo and K. H. Sim, “On the effects of ultrasound vibration on localized electrochemical deposition”, J. Micromech. Microeng. 12 (2002) 271–9.
[15] S. H. Yeo and J. H. Choo, “Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition”, J. Micromech. Microeng. 11 (2001) 435–42.
[16] A. D. Muller, F. Muller, and M. Hietschold, “Localized Electrochemical Deposition of Metals Using Micropipettes,” Thin Solid Films, 366 (2000) 32-36.
[17] Y. Li, Y. Zheng, G. Yang, and L. Peng, “Localized electrochemical micromachining with gap control, ”Sensors and Actuators A 108 (2003), pp. 144-148.
[18] J. H. Choo and S. H. Yeo, “Enhancement of spatial resolution of microfabricated columns using localized electrochemical deposition”, Proc. SPIE 4236 (2001) 260–71.
[19] J. H. Choo, S. H. Yeo and F. F. Tan, “Flexible tooling for localized electrochemical deposition with wireelectrodischarge grinding”, Micosyst. Technol. 10 (2004) 127–36.
[20] C. S. Lin, C. Y. Lee, J. H. Yang, Y. S. Huang, “Improved Copper Microcolumn Fabricated by Localized Electrochemical Deposition,” Electrochemical and Solid-State Letters, (2005) C125-C129.
[21] C. Y. Lee, C. S. Lin and B. R. Lin, “Localized electrochemical deposition process improvement by using different anodes and deposition directions”, J. Micromech. Microeng. 18 105008 (2008) 8pp.
[22] J. C. Lin, S. B. Jang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang and J. H. Yang, “Fabrication of micrometer Ni columns by continuous and intermittent micro anode guided electroplating”, J. Micromech. Microeng. 15 (2005) 2405–13.
[23] T. K. Chang, J. C. Lin, J. H. Yang, P. C. Yeh, D. L. Lee and S. B. Jiang, “Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition”, J. Micromech. Microeng. 17 (2007) 2336–43.
[24] J. H. Yang, J. C. Lin, T. K. Chang, G. Y. Lai and S. B. Jiang, “Assessing the degree of localization in localized electrochemical deposition of copper”, J. Micromech. Microeng. 18 055023 (2008) 8pp.
[25] J. C. Lin, T. K. Chang, J. H. Yang, J. H. Jeng, D. L. Lee and S. B. Jiang, “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement”, J. Micromech. Microeng. 19 015030 (2009) 10pp.
[26] J. H. Yang, J. C. Lin, T. K. Chang, X. B. You and S. B. Jiang, “Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process”, J. Micromech. Microeng. 19 025015 (2009) 12pp.
[27] J. C. Lin, J. H. Yang, T. K. Chang, and S. B. Jiang, “On the Structure of Micrometer Copper Features Fabricated by Intermittent Micro-Anode Guided Electroplating”, Electrochimica Acta. accepted.
[28] B. S. Guru,“Electrical Field Theory Fundamenals”pp.62-95.
[29] M. I. Montenegro, M. Arlete Queirous, John L. Daschbach, “Why microelectrodes? Microelectrodes: Theory and Application,” London : Kluwer Academic Publishers. 1991.
[30] D. R. Crow, “ Principles and Application of Electrochemistry”, 4th Edition, London Blackie Academic & Professional, 1994.
[31] Eliezer Gileadi, “Electrode Kinetics”, VCH Publishers, Inc., 1993.
[32] Lowenheim, Frederick Adolph, Electroplating/sponsored by the American Electroplaters’ Society, New York; McGraw-Hill, 1978.
指導教授 江士標、林景崎
(Shyh-biau Jiang、Jing-chie Lin)審核日期 2009-7-21 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare