博碩士論文 93343035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.133.121.160
姓名 洪榮洲(Jung-Chou Hung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微放電複合製程之微型工具製作技術及其精微加工研究
(A study on micro-tools fabrication in micro-EDM hybrid process for micro-machining)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微放電加工法是以高精度、微加工量、微小且穩定能量,加工微小且形狀複雜或具有特殊機械性質之難加工導電材料的一種有效方法。但微放電加工後,由於工具電極的消耗會使加工後之微結構形成錐度狀,且加工表面會形成再凝固層、微裂痕與放電坑,造成形狀精度不佳。再加上無法以一般傳統研磨加工法對微結構進行精修加工,因此本研究提出新式微放電複合製程精修加工技術,並發展出製作圓柱狀與圓球型等微型工具成形技術,可有效應用於精微模具加工而使模具達到高精度與高品質的表面形狀精度,以符合工業所需。
本研究提出兩種複合製程技術,分別為微工具搭配超音波振動游離磨粒之研磨技術,以及複合電鍍嵌入式磨粒後的微工具成形技術並探討其精微加工特性。首先針對微放電後之微圓孔與方形微孔進行研磨精修加工。實驗結果顯示,採用螺旋電極研磨法或微型圓柱狀研磨工具加工法,微細圓孔孔壁表面均可獲得顯著的精修效果;螺旋電極搭配超音波振動研磨法加工約25分鐘後,表面粗糙度值由研磨前之Rmax 1.35 μm降低至0.58 μm,而採用複合電鍍鎳-碳化矽後的微型圓柱狀工具加工時,表面粗糙度值可由研磨前之Rmax 1.47μm降低至0.46 μm。針對方形微孔而言,採用方柱狀工具搭配超音波振動研磨法,當加工45分鐘後表面粗度值Rmax可由0.96 μm降至0.31 μm。另外,對於微型球面模穴加工則是利用電極末端放電形成微球後,經複合電鍍鎳-鑽石後之微球型工具進行加工測試,可加工出一球面模穴,若搭配游離磨粒加工時,更可獲得Rmax 0.35 μm的微模穴表面。
摘要(英) The micro-EDM can be used to machine complex shape conductive hard-to-machine materials with high precision, less material remove rate, micro stable energy. However, micro-EDM will cause recast layer, discharge craters and micro-cracks on the machined surface with poor surface quality. This affects the precision of diameter and the geometric shape. Moreover, the electrode wear not only will the dimension of the machined structure be changed, but also its shape is severely distorted. Unfortunately, the conventional grinding is difficult to refine the machined shape accuracy by inserting the tool into the micro-hole. To overcome these issues, novel hybrid processes combined with micro-EDM were applied to effectively machine a micro-structure with high accuracy and quality surface.
This study describes two hybrid processes that are micro-tool with ultrasonic vibration free abrasive grinding method and co-deposited micro-tool with grinding method. The circular and square micro-holes are investigated in this study. Experimental results show that the surface roughness of the micro-hole inner-wall can be well refined without micro-cracks and micro-craters by each of the proposed methods. For the circular micro-hole, using a helical micro-tool with ultrasonic vibration grinding method takes only 25 minutes to improve the machined surface from 1.35 to 0.58 µm Rmax, while using a co-deposited micro-tool grinding method can improve the machined surface roughness from 1.47 to 0.46 µm Rmax. By using a square micro-tool with ultrasonic vibration grinding method, the surface roughness of the square micro-hole inner-wall can be improved from 0.96 to 0.31 µm Rmax. Moreover, after EDM spherical forming, a micro-spherical tool is made by Ni-diamond co-deposition. A smooth surface of micro-spherical cavity can be gained using the micro-spherical diamond tool and better one has surface roughness 0.35 μm Rmax can be finished by combining with free abrasive grinding.
關鍵字(中) ★ 複合電鍍
★ 超音波振動
★ 微放電加工
★ 微型工具
★ 複合製程
★ 微孔
★ 微模穴
關鍵字(英) ★ co-deposition
★ ultrasonic vibration
★ micro-EDM
★ hybrid process
★ micro-tool
★ micro-hole
★ micro-cavity
論文目次 摘 要 I
Abstract II
謝 誌 IV
目 錄 V
圖 目 錄 IX
表 目 錄 XIII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景 4
1-3 文獻回顧 6
1-3-1 微放電加工技術 6
1-3-2 微放電加工後表面精修技術 9
1-3-3 複合電鍍 10
1-4 研究方法 13
1-5 本文之構成 15
第二章 結合微放電與超音波振動研磨對微孔加工之研究 16
2-1 前言 16
2-2 基本原理 18
2-2-1 微放電加工 18
2-2-2 超音波振動 21
2-3 實驗設定 26
2-3-1 實驗設備 26
2-3-2 實驗材料 27
2-3-3 實驗方法 28
2-3-4 實驗流程 37
2-4 結果與討論 38
2-4-1微孔成型方式對改善圓形微孔形狀精度之探討 38
2-4-2 超音波振動研磨對改善圓形微孔精度之探討 41
2-4-2-1 圓形微孔入出口孔徑差改善率 41
2-4-2-2 圓形微孔孔壁表面粗度改善情況 47
2-4-3 微孔成型法對改善方形微孔形狀精度之探討 50
2-4-4 超音波振動研磨對改善方形微孔精度之探討 52
2-4-4-1 方形微孔入出口邊長差改善率 52
2-4-4-2 方形微孔孔壁表面粗度改善情況 54
2-5 結論 57
第三章 結合微放電與鎳-碳化矽複合電鍍法製作微圓柱型研磨工具對微孔精度改善之研究 58
3-1 前言 58
3-2 加工原理 59
3-2-1 複合電鍍原理 59
3-2-2 界面活性劑原理 61
3-3 實驗設定 62
3-3-1 實驗設備 62
3-3-2 實驗材料 63
3-3-3 實驗方法 65
3-3-4 實驗流程 68
3-4 結果與討論 69
3-4-1 複合電鍍沉積之鍍層特性 69
3-4-1-1 製程參數對鍍層厚度之影響 69
3-4-1-2 CTAB對鍍層特性之影響 71
3-4-2 鍍層表面磨粒附著 73
3-4-2-1 電流密度對鍍層表面磨粒附著之影響 73
3-4-2-2 陽極環孔徑對鍍層表面磨粒附著之影響 75
3-4-2-3 磨粒粒徑對鍍層表面磨粒附著之影響 77
3-4-2-4 工具轉速對鍍層表面磨粒附著影響 79
3-4-2-5 磨粒添加量對鍍層表面磨粒附著之影響 81
3-4-2-6 界面活性劑添加量對鍍層表面磨粒附著之影響 83
3-4-3 研磨加工後之工具磨耗與微孔表面特性 85
3-4-3-1 微型研磨工具之磨耗特性 85
3-4-3-2 磨粒粒徑對微孔研磨加工之影響 86
3-4-3-3 磨粒附著量對微孔研磨加工之影響 88
3-4-4 研磨加工前後孔壁表面之比較 89
3-5 結論 92
第四章 結合放電與鎳-鑽石複合電鍍法製作微型球狀研磨工具及其精微加工之研究 93
4-1 前言 93
4-2 表面張力原理 95
4-3 實驗設定 96
4-3-1 實驗設備 96
4-3-2 實驗材料 96
4-3-3 實驗方法 99
4-3-4 實驗流程 102
4-4 結果與討論 103
4-4-1 碳化鎢電極球狀放電成形 103
4-4-1-1電極材料 103
4-4-1-2 放電能量 105
4-4-1-3 電極轉速 107
4-4-2 複合電鍍參數對鍍層表面磨粒之影響 109
4-4-2-1 電流密度 109
4-4-2-2 工具轉速 112
4-4-2-3 磨粒添加量 115
4-4-2-4 加工時間 117
4-4-3 微型球狀工具加工微型球狀模穴測試 118
4-4-4 微型球狀工具搭配游離磨粒加工微型球狀模穴 122
4-5 結論 125
第五章 總結論 126
參考文獻 131
作者簡介 141
參考文獻 1. 陳仲宜,精微模具應用現況分析,2007金屬工業研究發展中心產業評析報告。
2. S. S. Choi, M. Y. Jung, D. W. Kim, M. A. Yakshin, J. Y. Park, Y. Kuk, Frabrication and microelectron gun arrays using laser micromachining, 1998 Microelectronic Engineering 41/42 167-170.
3. A. C. Wang, B. H. Yan, X. T. Li, F. Y. Huang, Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining, 2002 International Journal of Machine Tools and Manufacture 42 915-923.
4. H. Huang, H. Zhang, L. Zhou, H. Y. Zheng, Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol, 2003 Journal of Micromechanics and Microengineering 13 693-700.
5. W. Ehrfeld, H. Lehr, Deep X-Ray Lithography for the production of three-dimensional microstructures from metals, polymers and ceramics, 1995 Radiation physics and chemistry 45 3 349-365.
6. R. K. Kupka, F. Bouamrance, C. Cremers, S. Megtert, Microfabrication: LIGA-X and applications, 2000 Applied Surface Science 164 1-4 97-110.
7. H. S. Liu, B. H. Yan, C. L. Chen, F. Y. Huang, Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining, 2006 International Journal of Machine Tools & Manufacture 46 80-87.
8. B. H. Kim, S. H. Ryu, D. K. Choi and C. N. Chu, Micro electrochemical milling, 2005 Journal of Micromechanics and Microengineering 15 124-129.
9. K. H. Hou, M. D. Ger, L. M. Wang and S. T. Ke, The wear behaviour of electro-codeposited Ni–SiC composites, 2002 Wear 253 994-1003.
10. T. Masuzawa, M. Fujino, K. Kobayashi and T. Suzuki, Wire Electro-Discharge Grinding for Micro-Machining, 1985 Annals of the CIRP, 34 (1) 431-434.
11. K. Kagaya, Y. Oishi, K. Yada, Micro-electro discharge machining Using Water as a working Fluid-I: 1986 Micro-hole Drilling, Precision Engineering, 8 (3) 156-162.
12. M. Kunieda, T. Masuzawa, A fundamental study on a horizontal EDM, 1988 Annals of the CIRP 37 (1) 187–190.
13. T. Masuzawa, J. Tsukamoto and M. Fujino, Drilling of Deep Microholes by EDM, 1989 Annals of the CIRP, 38 (1) 195-198.
14. K. P. Rajurkar, G. F. Royo, Improvement in EDM performance by R.F. control and orbital motion, 1989 American Society of Mechanical Engineers 34 51-62.
15. T. Masuzawa, M. Yamamoto and M. Fujino, A Micropunching System Using Wire-EDM, 1989 Proc. of Int’l Symposium for Electromachining (ISEM-9) 86-89.
16. K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining Using Water as a working Fluid-2: Narrow Slit Fabrication, 1990 Precision Engineering, 12 (4) 213-217.
17. T. Masaki, K. Kawata and T. Masuzawa, Micro Electo-Discharge Machining and Its Application, 1990 Proc. of MEMS ‘90 IEEE 21-26.
18. C. L. Kuo, T. Masuzawa, M. Fujino, A micro-pipe fabrication process, 1991 Proc. Of MEMS ’91 IEEE 80-85.
19. C. L. Kuo, T. Masuzawa, M. Fujino, High Precision Micronozzle Fabrication Process, 1992 Proc. Of MEMS ’92 IEEE 116-121.
20. T. Masuzawa, C. L. Kuo, M. Fujino, A combined electrical machining process for micronozzle fabrication, 1994 Annals of the CIRP 43 (1) 189-192.
21. H. H. Langen, T. Masuzawa, M. Fujino, Modular method for microparts machining and assembly with self-alignment, 1995 Annals of the CIRP 44 173-176.
22. D. M. Allen, A. Lecheheb, Micro electro-discharge machining of ink jet nozzles: optimum selection of material and machining parameters, 1996 Journal of Material Processing Technology 58 53-66.
23. X.-Q. Sun, T. Masuzawa, M. Fjino, Micro ultrasonic machining and its applications in MEMS, 1996 Sensors and actuators A 57 159-164.
24. D. Reynaerts, P. H. Heeren, H. V. Brussel, Microstructuring of silicon by electro-discharge machining (EDM) – part I: theory, 1997 Sensors and Actuators A, 60 212-218.
25. P. H. Heeren, D. Reynaerts, H. V. Brussel, Three-dimensional silicon micromechanical parts manufactured by electro-discharge machining, 1997 Proceeding of MEMS ’97 IEEE 247-252.
26. Z. Y. Yu, T. Masuzawa, M. Fujino, Micro-EDM for three dimensional cavities – Development of uniform wear method , 1998 Annals of the CIRP 47 (1) 169-172.
27. B. H. Yan, F. Y. Huang, H. M. Chow, J. Y. Tasi, Micro-hole machining of carbide by electrical discharge machining, 1999 Journal of Material Processing Technology 87 139-145.
28. K. Egashira, T. Masuzawa, Microultrasonic Machining by the Application of Workpiece Vibration, 1999 Annals of the CIRP 48 (1) 131-134.
29. K. Takahata, N. Shibaike, H. Guckel, A novel micro electro-discharge machining method using electrodes fabricated by the LIGA process, 1999 Proceeding of MEMS ’99 IEEE 238-243.
30. N. Mohri, H. Takezawa, K. Furutani, Y. Ito, T. Sata, A new process of additive and removal Machining by EDM with a thin electrode, 2000 Annals of the CIRP 49 (1) 123-126.
31. K. P. Rajurkar, Z. Y. Yu, 3D micro-EDM using CAD/CAM, 2000 Annals of the CIRP 49 (1)127-130.
32. M. G. Her, F. T. Weng, Micro-hole machining of copper using the electro-discharge machining process with a tungsten carbide electrode compared with a copper electrode, 2001 International Journal of Advanced Manufacturing Technology 17 715-719.
33. S. H. Yeo, G. G. Yap, A feasibility study on the micro electro-discharge machining process for photomask fabrication, 2001 International Journal of Advanced Manufacturing Technology 18 7-11.
34. K. Takahata, Y. B. Gianchandani, Batch mode micro-EDM for high-density and high-throughput micromachining, 2001 Proceeding of MEMS ’01 IEEE 72-75.
35. K. Takahata, Y. B. Gianchandani, Batch mode Micro Electro Discharge machining, 2002 Journal of micro electro mechanical systems 11 (2) 102-110.
36. Y. Li, M. Guo, Z. Zhou, M. Hu, Micro electro discharge machine with an inchworm type of micro feed mechanism, 2002 Precision Engineering 26 7-14.
37. Z. Y. Yu, K. P. Rajurkar, H. Shen, High aspect ratio and complex shaped blind micro holes by micro EDM, 2002 Annals of the CIRP 51 (1) 359-362.
38. K. Egashira, K. Mizutani, Micro-drilling of monocrystalline silicon using a cutting tool, 2002 Precision Engineering 26 263-268.
39. F. T. Weng, M. H. Her, Study of the batch production of micro parts using the EDM process, 2002 International Journal of Advanced Manufacturing Technology 19 266-270.
40. T. Mori, K. Hirota, S. Kurimoto, Y. Nakano, Die making of ultra-fine piercing by electric discharge machining, 2002 International symposium on micromechatronics and human science 61-66.
41. 黃玉龍、郭佳儱,微放電加工製作微圓盤刀具進行銑削和研削微溝槽之研究,2002第十九屆機械工程研討會第四冊製造與材料(下) 747-754。
42. P. C. Kaminski and M. N. Capuano, Micro hole machining by conventional penetration electrical discharge machine, 2003 International Journal of Machine Tools & Manufacture 43 1143–1149.
43. I. Beltrami, C. Joseph, R. Clavel, J. P. Bacher and S. Bottinelli, Micro- and nanoelectric-discharge machining, Journal of Materials, 2004 Processing Technology 149 263-265.
44. Y. Imai, T. Nakagawa, H. Miyake, H. Hidai and H. Tokura, Local actuator module for highly accurate micro-EDM, 2004 Journal of Materials Processing Technology 149 328-333.
45. D. Y. Sheu, Micro-spherical probes machining by EDM, 2005 Journal of Micromechanics and Microengineering 15 185-189.
46. H. Fuzhu, Y. Yuji, K. Taichi and K. Masanori, Experimental attempts of sub-micrometer order size machining using micro-EDM, 2006 Precision Engineering 30 123-131.
47. H. Nakaoku, T. Masuzawa and M. Fujino, Micro-EDM of sintered diamond, 2007 Journal of Materials Processing Technology 187-188 274-278.
48. D. K. Chung, B. H. Kim and C. N. Chu, Micro electrical discharge milling using deionized water as a dielectric fluid, 2007 Journal of Micromechanics and Microengineering 17 867-874.
49. H. Hocheng, P.S. Pa, Electropolishing and electrobrightening of holes using different feeding electrodes, Journal of Materials Processing Technology 89–90 (1999) 440–446.
50. C. Zhang, H. Ohmori, W. Li, Small-hole machining of ceramic material with electrolytic interval-dressing (ELID-II) grinding, 2000 Journal of Materials Processing Technology 105 284-293.
51. C. Zhang, H. Ohmori, W. Li, Precision shaping of small diameter wheels using micro electric discharge truing (MEDT) and hole-machining of Al2O3 material, 2000 International Journal of Machine Tools and Manufacture 40 661-674.
52. J. Zhao, J. Zhan, R. Jin, M. Tao, An oblique ultrasonic polishing method by robot for free-form surface, 2000 International Journal of Machine Tools and Manufacture 40 (6) 795-808.
53. J. C. Hung, B. H. Yan, H. S. Liu and H. M. Chow, Micro-hole machining using micro-EDM combined with electropolishing, 2006 Journal of Micromechanics and Microengineering 16 1480-1486.
54. M. Ghouse, M. Viswanathan, E. G. Ramachandran, Occlusion Plating of Copper-Silicon Carbide Composites, 1980 Metal Finishing 78 3 31-35.
55. C. Buelens, J. P. Celis, J. R. Roos, Electrochemical Aspects of The Co-deposition of Gold and Copper with Inert Particles, 1983 Journal of Applied Electrochemistry 13 4 541-548.
56. J. Zahavi, J. Hazan, Electrodeposited Nickel Composites Containing Diamond Particles, 1983 Plating Surface Finishing 70 2 57-61.
57. M. Ghouse, Wear Characteristics of Sediment Co-deposited Nickel-SiC Composite Coatings, 1984 Metal Finishing 82 3 33-37.
58. Y. C. Liu, J. W. Wang, Y. M. Peng, H. J. Chen, J. H. Shen, C. A. Huang, Ni-SiC Composite plating, 1990 MRL Bulletin of Research and Development 4 1 31-34.
59. A. Hovestad, L. J. J. Janssen, Electrochemical Co-deposition of Inert Particles in a Metallic Matrix, 1995 Journal of Applied Electrochemistry 25 6 519-527.
60. G. Maurin and A. Lavanant, Electrodeposition of Nickel/Silicon Carbide Composite Coatings on a Rotating Disc Electrode, 1995 Journal of Applied Electrochemistry 25 12 1113-1121.
61. O. Berkh, A. Bodnevas and J. Zahavi, Electrodeposited Ni-P-SiC Composite Coatings, 1995 Plating and Surface Finishing 82 11 62-66.
62. O. Berkh, S. Eskin, J. Zahavi, Properties of Electrodeposited NiP-SiC Composite Coatings, 1996 Metal Finishing 94 3 35-40.
63. H. Ferkel, B. Müller, W. Riehemann, Electrodeposition of Particle-Strengthened Nickel Films, 1997 Materials Science & Engineering A 234-236 474-476.
64. S. Shawki, Z. Abdel Hamid, Deposition of High Wear Resistance of Ni-SiC Composite Coatings, 1997 Aircraft Engineering and Aerospace Technology 69 3 432-439.
65. K. Helle and F. Walsh, Electrodeposition of Composite Layers Consisting of Inert Inclusions in a Metal Matrix, 1997 Transactions of the Institute of Metal Finishing 75 2 53-58.
66. L. Orlovskaja, N. Periene, M. Kurtinaitiene, S. Survilene, Ni-SiC Composite Plated Under a Modulated Current, 1999 Surface and Coatings Technology 111 2-3 234-239.
67. A. E. Breaux, E. J. Podlaha, Electrodeposition of Nickel-γ-Alumina Nanocomposites, 1999 195th Society Meeting of the Electrochemical Society 99-I Abstract 13.
68. L. Benea, P. L. Bonora, A. Borello, S. Martelli, F. Wenger, P. Ponthiaux, J. Galland, Composite Electrodeposition to Obtain Nanostructured Coatings, 2001 Journal of the Electrochemical Society 148 7 C461- C465.
69. I. Garcia, J. Fransaer, J. P. Celis, Electrodeposition and Sliding Wear Resistance of Nickel Composite Coatings Containing Micron and Submicron SiC Particles, 2001 Surface & Coatings Technology 148 2-3 171-178.
70. N.K. Shrestha, K. Sakurada, M. Masuko and T. Saji, Composite Coatings of Nickel and Ceramic Particles Prepared in Two Steps, 2001 Surface and Coatings Technology 140 2 175-181.
71. I. Shao, P. M. Vereecken, R. R. Cammarata, P. C. Searson, Kinetics of Particle Codeposition of Nanocomposites, 2002 Journal of the Electrochemical Society 149 11 C610-C614.
72. I. Shao, P. M. Vereecken, C. L. Chien, P. C. Searson and R. C. Cammarata, Synthesis and Characterization of Particle-Reinforced Ni/Al2O3 Nanocomposites, 2002 Journal of Materials Research 17 6 1412-1418.
73. S. C. Wang, W. C. J. Wei, Kinetics of Electroplating Process of Nano-Sized Ceramic Particle/Ni Composite, 2003 Materials Chemistry and Physics 78 574-580.
74. S. L. Kuo, X. L. Chen, Y. C. Chen, W. H. Hwu, M. D. Ger, Physical and Chemical Dispersion Effects on the Preparation of Ni-Al2O3 Composite Coating, 2003 Journal of the Chinese Institute of Chemical Engineers 34 4 393-398.
75. L. Du, B. Xu, S. Dong, H. Yang and W. Tu, Study of tribological characteristics and wear mechanism of nano-particle strengthened nickel-based composite coatings under abrasive contaminant lubrication, 2004 Wear 257 1058-1063.
76. L. Wang, Y. Gao, H. Liu, Q. Xue and T. Xu, Effects of bivalent Co ion on the co-deposition of nickel and nano-diamond particles, 2005 Surface & Coatings Technology 191 1-6.
77. N. K. Shrestha, T. Takebe and T. Saji, Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings, 2006 Diamond & Related Materials 15 1570-1575.
78. M. C. Shaw, Ultrasonic Grinding, 1956 Microtecnic 10 257.
79. G. E. Miller, Special Theory of Ultrasonic Machining, 1957 Journal of Applied Physics 28 149.
80. L. D. Rozenberget, Ultrasonic Cutting, 1964 Authorized translation from the Russian (New York: Consultants Bureau).
81. 曾信智,黏彈性磨料應用於複雜曲面的精拋技術研究,2005中央大學博士論文。
82. N. Gulielmi, “Kinetics of the Deposition of Inert Particles from Electrolytic Baths” 1972 Journal of the Electrochemical Society 119 8 1009-1012.
83. J. P. Celis, J. R. Roos, C. Buelens, “A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix” 1987 Journal of the Electrochemical Society 134 6 1402-1408.
84. B. J. Hwang, C. S. Hwang, “Mechanism of Codeposition of Silicon Carbide with Electrolytic Cobalt” 1993 Journal of the Electrochemical Society 140 4 979-984.
85. 柯世宗,Ni基微模具電鑄之研究,2002國防大學中正理工學院博士論文。
86. J. Gabler, L. Schafer, B. Menze and H. W. Hoffmeister, Micro abrasive pencils with CVD diamond coating, 2003 Diamond and Related Materials, 12 707-710.
87. W. Ahmed, H. Sein, N. Ali, J. Gracio and R. Woodwards, Diamond films grown on cemented WC-Co dental burs using an improved CVD method, 2003 Diamond and Related Materials 12 1300-1306.
88. W. Ahmed, H. Sein, M. Jackson and R. Polini, Chemical vapour deposition of diamond films onto tungsten carbide dental burs, 2004 Tribology International 37 957-964.
89. 趙承琛,界面科學基礎,2002復文書局。
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2007-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明