參考文獻 |
1. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics,” Materials
Science and Engineering, Vol. 27, 2000, pp. 95-141.
2. W. J. Plumbridge, “Structural Integrity in Electronics,” Fatigue and Fracture of
Engineering Materials and Structures, Vol. 27, 2004, pp. 723-734.
3. Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center
for Manufacturing Sciences, Michigan, 1997.
4. E. P. Wood, “In Search of New Lead-Free Electronic Solders,” Journal of Electronic
Materials, Vol. 23, 1994, pp. 709-714.
5. B. Richards and K. Nimmo, “An Analysis of the Current Status of Lead-Free
Soldering: Update 2000,” UK Department of Trade and Industry, London, 2000.
6. M. R. Harrison and J. H. Vincent, “IDEALS: Improved Design and Environment
Aware Manufacturing of Electrics Assemblies by Lead-Free Solderings,” pp. 98-104
in Proceeding of the 12th Microelectronics and Packing Conference, IMAPS Europe,
Cambridge, 1999.
7. Report on Research and Development on Lead-Free Soldering, Japan Electronic
Industry Development Association, Tokyo, 2000.
8. W. Yang, L. E. Feltion, and R. W. Messler, “The Effect of Soldering Process
Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu
Solder Joints,” Journal of Electronic Materials, Vol. 24, 1995, pp. 1465-1472.
6. M. McCormack and S. Jin, “Improve Mechanical Properties in New, Pb-Free Solder
Alloys,” Journal of Electronic Materials, Vol. 23, 1994, pp. 715-720.
10. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-Free Solder Alloy
with Superior Mechanical-Properties,” Applied Physics Letters, Vol. 63, 1993, pp.
15-17.
11. IPC Roadmap: A guide for Assembly of Lead-Free Electronics, 4th Draft, IPC,
Northbrook, IL, June, 2000.
12. F. Ochoa, J. J. Williams, and N. Chawla, “Effects of Cooling Rate on the
Microstructure and Tensile Behavior of a Sn-3.5wt.%Ag Solder,” Journal of
Electronic Materials, Vol. 32, 2003, pp. 1414-1420.
13. 菅沼 克昭, 鉛 付 技術, 工業調查會, 日本, 2003. (日文)
14. D. W. Henderson, T. Gosselin, and A. Sarkhel, “Ag3Sn Plate Formation in the
Soldification of Near Eutectic Sn-Ag-Cu Alloys,” Journal of Material Research, Vol.
17, 2002, pp. 2775-2778.
15. L. Ye, Z. H. Lai, J. Liu, and A. Thoen, “Microstructure Investigation of
Sn-3.5Ag-0.5Cu and Sn-3.5Ag-0.5Cu-0.5Bi Lead-Free Solders,” Soldering and
Surface Mount Technology, Vol. 13, 2001, pp. 16-20.
16. W. J. Plumbridge, C. R. Gagg, and S. Peters, “The Creep of Lead-Free Solders at
Elevated Temperatures,” Journal of Electronic Materials, Vol. 30, 2001, pp.
1178-1183.
17. S. G. Jadhav, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, “Stress Relaxation
Behavior of Composite and Eutectic Sn-Ag Solder Joints,” Journal of Electronic
Materials, Vol. 30, 2001, pp. 1197-1205.
18. D. J. Xie and Y. C. Chan, “Fatigue Life Estimation of Surface Mount Solder Joints,”
IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.
19, 1996, pp. 669-678.
19. X. Q. Shi, H. L. J. Pang, W. Zhou, and Z. P. Wang, “Low Cycle Fatigue Analysis of
Temperature and Frequency Effects in Eutectic Solder Alloy,” International Journal
of Fatigue, Vol. 22, 2000, pp. 217-228.
20. X. Chen, J. Song, and K. S. Kim, “Low Cycle Fatigue Life Prediction of 63Sn-37Pb
Solder Under Proportional and Non-Proportional Loading,” International Journal of
Fatigue, Vol. 28, 2006, pp. 757-766.
21. J. H. L. Pang, B. S. Xiong, and T. H. Low, “Low Cycle Fatigue of lead Free
99.3Sn-0.7Cu Solder Alloy,” International Journal of Fatigue, Vol. 26, 2004, pp.
865-872.
22. H.-T. Lee, H.-S. Lin, C.-S. Lee, and P.-W. Chen , “Reliability of Sn-Ag-Sb Lead-Free
Solder Joints,” Materials Science and Engineering A, Vol. 407, 2005, pp. 36-44.
23. J. J. Sundelin, S. T. Nurmi, T. K. Lepisto, and E. O. Ristolainen, “Mechanical and
Microstructural Properties of SnAgCu solder Joints,” Materials Science and
Engineering A, Vol. 420, 2006, pp. 55-62.
24. C. Andersson, Z. Lai, J. Liu, H. Jiang, and Y. Yu, “Comparison of Isothermal
Mechanical Fatigue Properties of Lead-Free Solder Joints and Bulk Solders,”
Materials Science and Engineering A, Vol. 394, 2005, pp. 20-27.
25. T.-S. Park and S.-B. Lee, “Low Cycle Fatigue Testing of Ball Grid Array Solder Joints under Mixed-Mode Loading Conditions,” Journal of Electronic Packaging,
Vol. 127, 2005, pp. 237-244.
26. A. U. Telang and T. R. Bieler, “Characterization of Microstructure and Crystal
Orientation of the Tin Phase in Single Shear Lap Sn-3.5Ag Solder Joint Specimens,”
Scripta Materialia, Vol. 52, 2005, pp. 1027-1031.
27. B. L. Chen and G. Y. Li, “Influence of Sb on IMC Growth in Sn-Ag-Cu-Sb Pb-Free
Solder Joints in Reflow Process,” The Solid Films, Vol. 462, 2004, pp. 395-401.
28. X. Deng, R. S. Sidhu, P. Johnson, and N. Chawla, “Influence of Reflow and Thermal
Aging on the Shear Strength and Fracture Behavior of Sn-3.5Ag Solder Cu Joints,”
Metallurgial and Materials Transactions A, Vol. 36A, 2005, pp. 55-64.
29. H. T. Lee and Y. H. Lee, “Adhesive Strength and Tensile Fracture of Ni Particle
Enhanced Sn-Ag Composite Solder Joints,” Material Science and Engineering A, Vol.
419, 2006, pp. 172-180.
30. W. W. Lee, L. T. Nguyen, and G. S. Selvaduray, “Solder Joint Fatigue Models:
Review and Applicability to Chip Scale Packages,” Microelectronics Reliability, Vol.
40, 2000, pp. 231-244.
31. J. Liang, N. Dariavach, G. Barr, and Z. Fang, “Effect of Strain Rates and Biaxial
Stress Conditions on Plastic Yielding and Flow Stress of Solder Alloys,” Journal of
Electronic Materials, Vol. 35, 2006, pp. 372-379.
32. X. Chen, D. Jin, M. Sakane, and T. Yamamoto, “Multiaxial Low-Cycle Fatigue of
63Sn-37Pb Solder,” Journal of Electronic Materials, Vol. 34, 2005, pp. l1-l6.
33. X. Chen, J. Song, and K. S. Kim, “Low Cycle Fatigue Life Prediction of 63Sn-37Pb
Solder under Uniaxial and Torsional Loading,” International Journal of Fatigue, Vol.
28, 2006, pp. 767-776.
34. L. F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile
Metal,” Transactions of ASME, Vol. 76, 1954, pp. 931-950.
35. S. S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat
Transfer Symposium, University of Michigan Engineering Research Institute, 1953,
pp. 9-75.
36. H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components,
Hybrids, and Manufacturing Technology, Vol. 9, 1986, pp. 423-432.
37. M. W. Brown and K. J. Miller, “A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions,” Proceedings of the Institution of Mechanical Engineers,
Vol. 187, No. 65, 1973, pp. 745-755.
38. F. A. Kandil, M. W. Brown, and K. J. Miller, “Biaxial Low-Cycle Fatigue Fracture of
316 Stainless Steel of Evaluated Temperatures,” pp. 203-210 in Mechanical Behavior
and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, The
Metals Society, London, 1982.
39. J. D. Morrow , “Cyclic Plastic Strain Energy and Fatigue of Metals,” pp. 45-87 in
Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, American Society
for Testing and Materials, Philadephia, USA, 1965,
40. B. L. Lee, K. S. Kim, and K. M. Nam, “Fatigue Analysis under Variable Amplitude
Loading Using an Energy Parameter,” International Journal of Fatigue, Vol. 25,
2003, pp.621-631.
41. X. Chen, S. Xu, and D. Haung, “Critical Plane Strain Energy Density Criterion of
Multi Axial Low Cycle Fatigue Life under Non-Proportional Loading,” Fatigue and
Fracture Engineering of Materials and Structures, Vol. 22, 1999, pp.679-686.
42. C.-M. Huang, “Low-Cycle Fatigue of Sn-3.5Ag-0.5Cu Lead-Free Solder under
Various Loading Conditions,” M.S. Thesis, National Central University, Jhong-Li,
Taiwan, 2005.
43. M. E. Loomans and M. E. Fine, “Tin-Silver-Copper Eutectic Temperature and
Composition,” Metallurgical and Materials Transactions A, Vol. 31A, 2000, pp.
1155-1162.
44. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A.
Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder
Alloys,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1122-1136. |