參考文獻 |
B. Alazmi and K. Vafai “Analysis of Variants within the porous media transport models,” J. Heat Transfer, 2000, 122, 303-326.
R. Aris, Proceedings of Royal Society London A, 1959, 252, 538-550.
D. E. Beasley and J. A. Clark “Transient response of packed beds for thermal energy storage,” Int. J. Heat Mass Transfer, 1984, 27, 1659-1669.
G. S. Beavers, E. M. Sparrow and D. E. Rodenz “Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres,” J. Appl. Mech., 1973, 40, 655-660.
G. Chen, U. Tallarek, A. Seidel-Morgenstern and Y. Zhang “Influence of moderate Joule heating on electroosmotic flow velocity, retention, and efficiency in capillary electrochromatography,” J. Chromatography A, 1044, 2004, 287-294.
R. Chein, Y. C. Yang and Y. Lin “Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows,” Electrophoresis, 2005, 27, 640-649.
S. W. Churchill and H. H. S. Chu “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer, 1975, 18, 1049.
B. Eisfeld, K. and Schnitzlein “The influence of confining walls on the pressure drop in packed beds,” Chemical Eng. Science, 2001, 56, 4321-4329
D. Erickson, D. Sinton and D.-Q. Li “Joule heating and heat transfer in poly(dimethylsiloxane) micro fluidic systems,” Lab Chip, 2003, 3, 141-149.
C. J. Evenhuis, R. M. Guijt, M. Macka, P. J. Marriott and P. R. Haddad “Internal electrolyte temperature for polymer and fused-silica capillaries used in capillary electrophoresis,” Electrophoresis, 2005, 26, 4333-4344.
C. J. Evenhuis, R. M. Guijt, M. Macka, P. J. Marriott and P. R. Haddad “Variations of zeta-potential with temperature in fused-silica capillaries used for capillary electrophoresis,” Electrophoresis, 2006, 27, 672-676.
K. Horiuchi and P. Dutta “Joule heating effects in electroosmotically driven microchannel flows,” Inter. J. Heat and Mass Transfer, 2004, 47, 3085-3095.
C. T. Hsu “A closure model for transient heat conduction in porous media,” J. Heat Transfer, 1999, 121, 733-739.
C. T. Hsu, P. Cheng and K. W. Wong “A lumped parameter model for stagnant thermal conductivity of porous media,” J. Heat Transfer, 1995, 117, 264-269.
R. J. Hunter, Zeta Potential in Colloid Science, principles and applications, New York: Academic, 1988.
Y. Kang, C. Yang and X. Huang, “Analysis of the electroosmotic flow in a microchannel packed with homogeneous microspheres under Electrokinetic wall effect,” Inter. J. Eng. Science, 2004, 42, 2011-2027.
Y. Kang, C. Yang and X. Huang “Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres,” Langmuir, 2005, 21, 7598-7607.
M. Kaviany, Principles of Heat Transfer in Porous Media, Springer- Verlag, 1995.
C. Keim and M. Ladisch “Model for temperature profiles in large diameter electrochromatography columns,” AIChE J., 2003, 49, 402-410.
B. J. Kirby and E. F. Hasselbrink Jr. “Zeta potential of microfluidic substrates: 2. Data for polymers,” Electrophoresis, 2004, 25, 203-213.
B. J. Kirby and E. F. Hasselbrink Jr. “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis, 2004, 25, 187-202.
A. V. Kuzentsov, M. Xiong and D.A. Nield “Thermally developing forced convection in a porous medium: Circular duct with walls at constant temperature, with longitudinal conduction and viscous dissipation effects,” Transport in Porous Media, 2003, 53, 331-345.
D.-Q. Li, Electrokinetics in Microfluidics, Elsevier, 2004.
D. J. Laser and J. G. Santiago “A review of micropumps,” J. Micromech. Microeng., 2004, 14, R35-R64.
A. I. Liapis and B. A. Grimes “Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems,” J. Chromatography A, 2000, 877, 181-215.
D. Maynes and B. W. Webb “Fully-developed thermal transport in combined pressure and electroosmotically driven flow in microchannels,” J. Heat Transfer, 2003, 125, 889-895.
A. Nakayama, F. Kuwahara, M. Sugiyama and G.-I. Xu “A two-energy equation model for conduction and convection in porous media,” Inter. J. Heat and Mass Transfer, 2001, 44, 4375-4379.
D. A. Nield “A note on the modeling of local thermal non-equilibrium in a structured porous medium,” Inter. J. Heat and Mass Transfer, 2002, 45, 4367-4368.
D.A. Nield and A. Bejan, Convection in Porous Media, Springer-Verlag, New York, 1999.
N. J. Petersen, R. P. H. Nikolajsen, K. B. Mogensen and J. P. Kutter “Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoresis separation systems: A closer look,” Electrophoresis, 2004, 25, 253-269.
R.F. Probstein, Physicochemical Hydrodynamics, John Wiley & Sons, New York, 1994.
A. S. Rathore “Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns,” J. Chromatography A, 2004, 1037, 431-443.
A. S. Rathore, K. J. Reynolds and L. A. Colon “Joule heating in packed capillaries used in capillary electrochromatography,” Electrophoresis, 2002, 23, 2918-2928.
T. T. Razumguzwa and A. T. Timperman “Fabrication and characterization of a fritless microfabricated electroosmotic pump with reduced pH dependence,” Anal. Chem., 2004, 76, 1336-1341.
F. F. Reuss “Charge-induced flow,” Proceedings of the Imperial Society of Naturalists of Moscow, 1809, 3, 327-344.
C. L. Rice and R. Whitehead, “Electrokinetic flow in a narrow cylindrical capillary,” J. Phys. Chem., 1965, 69, 4017-4024.
J. G. Santiago “Electro osmotic flows in microchannels with finite inertial and pressure forces,” Anal. Chem., 2001, 73, 2353-2365.
V. Singhal, S. V Garimella and A. Raman “Microscale pumping technologies for microchannel cooling systems,” Appl. Mech. Rev., 2004, 57, 191-221.
D. Sinton and D.-Q. Li “Electroosmotic velocity profiles in microchannels,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 222, 273-283.
D. Sinton, X.-C. Xuan and D.-Q. Li “Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure,” Experiments in Fluids, 2004, 37, 872-882.
G. Y. Tang, D. Yan, C. Yang, H. Gong, J. C. Chai and Y. C. Lam “Assessment of Joule heating and its effects on electroosmotic flow and electrophoresis transport of solutes in micro fluidic channels,” Electrophoresis, 2006, 27, 628-639.
G. Y. Tang, C. Yang, C. J. Chai and H. Q. Gong “Modeling of electroosmotic flow and capillary electrophoresis with Joule heating effect: The Nerst-Planck equation versus the Boltzmann distribution,” Langmuir, 2003, 19, 10975-10984.
G. Y. Tang, C. Yang, J. C. Chai and H. Q. Gong “Joule heating effect on electroosmotic flow and mass species transport in a microcapillary,” Inter. J. Heat and Mass Transfer, 2004, 47, 215-227.
K. Vafai and C. L. Tien “Boundary and inertia effects on flow and heat transfer in porous media,” Inter. J. Heat Mass Transfer, 1980, 24, 195-203.
K. Vafai, Handbook of Porous Media, Marcel Dekker, 2005.
K. Vafai and S. J. Kim “On the limitations of the Brinkman-Forchheimer extended Darcy equation,” Inter. J. Heat and Fluid Flow, 1995, 16, 11-15.
N. Wakao and S. Kaguei “Heat and Mass Transfer in Packed Beds,” Gordon and Breach Science Pub, 1982.
X. Xuan, B. Xu, D. Sinton and D.-Q. Li “Electroosmotic flow with Joule heating effects,” Lab Chip, 2004, 4, 230-236.
X. Xuan, D. Sinton and D.-Q. Li “Thermal end effect on electroosmotic flow in a capillary,” Inter. J. Heat and Mass Transfer, 2004, 47, 3145-3157.
X. Xuan and D.-Q. Li “Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis,” J. Chromatography A, 2005, 1064, 227-237.
X. Xuan and D.-Q. Li “Joule heating effects on peak broadening in capillary zone electrophoresis,” J. Micromech. Microeng., 2004, 14, 1171-1180.
G. Y. Yang, C. Yang, C. K. Chai and H. Q. Gong “Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels,” Analytica Chimica Acta, 2004, 507, 27-37.
J. Yang and D. Kwok “Microfluid flow in circular microchannel with electrokinetic effect and Navier’s slip condition,” Langmuir, 2003, 19, 1047-1053.
R. J. Yang, L. M. Fu and Y. C. Lin “Electro osmotic flow in microchannels,” J. Colloid and Interface Science, 2001, 239, 98-105.
S. Yao, D. E. Hertzog, S. Zeng, J. C. Mikkelsen and J. G. Santiago “Porous glass electroosmotic pumps: design and experiments,” J. Colloid and Interface Science, 2003, 268, 143-153.
S. Yao, D. Huber, J. C. Mikkelsen and J. G. Santiago “A large flowrate electroosmotic pump with micron pores,” ASME Inter. Mechanical Eng. Congress and Exposition. November 11-16, New York, 2001.
S. Yao, A. M. Myers, J. D. Posner, K. A. Rose and J. G. Santiago “Electroosmotic pumps fabricated from porous silicon membranes,” J. Microelectromech. Systems, 2006, vol. 15, no. 3, 717-728.
S. Yao and J. G. Santiago “Porous glass electroosmotic pumps: theory,” J. Colloid and Interface Science, 2003, 268, 133-142.
S. Zeng, C.-H. Chen, J. C. Mikkelsen Jr. and J. G. Santiago “Fabrication and characterization of electroosmotic micropumps,” Sensors and Actuators B, 2001, 79, 107-114.
T. S. Zhao and Q. Liao “Thermal effects on electroosmotic pumping of liquids in microchannels,” J. Micromech. Microeng., 2002, 12, 962-970. |