博碩士論文 943203060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.118.119.129
姓名 黃銘志(Ming-chih Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電化學鑽孔加工之模擬
(The simulation of the electrochemical drilling)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在電化學鑽孔加工過程中,陽極工件會隨著加工時間而使得外型不斷演變,直至得到所需的加工外型,在模擬上,陰極刀具的進給與陽極工件外型的演變皆會產生移動邊界的問題。本文利用等位函數法來解決移動邊界的問題,模擬陽極工件外型隨著陰極刀具的進給時,工件外型的演變,並探討各種刀具類型、工作電壓與刀具進給速度等…對陽極工件外型的影響。結果顯示在不發生撞針的情況下,越小的工作電壓與越快的刀具進給速度可得到越好的加工外型。
摘要(英) In the electrochemical drilling (ECD) process, the shape of the workpiece would keep changing until the final shape had been reached. However, the feeding rate of the tool and the evolution of the workpiece would result in moving boundary problems in numerical analysis. Therefore, this article used the level set method to solve moving boundary problems. Finally, the influence of different types of tools, working voltage, and the feeding rate on ECD processes would be discussed. The results could be obtained that the smaller working voltage and the faster feeding rate would get the better shape of the workpiece.
關鍵字(中) ★ 電化學鑽孔加工
★ 等位函數法
關鍵字(英) ★ electrochemical drilling
★ level set method
論文目次 第一章 緒論……………………………………………………………..1
1.1 前言…………………………………………………….......1
1.2 文獻回顧………………………………………………..….2
1.2.1 電化學鑽孔加工…………………………………..…2
1.2.2 反求加工刀具外型………………………………..…3
1.2.3 微電化學加工………………………………………..4
1.3 研究目的…………………………………………………...4
第二章 理論分析………………………………………………………..6
2.1 理論描述與假設…………………………………………...6
2.2 二維電場分佈……………………………………………...7
2.2.1 電場統御方程式........................................................7
2.2.2 刀具類型之邊界條件………………………………7
2.3 電解反應…………………………………………………...9
2.4 電流密度………………………………………………….10
2.5 導電度…………………………………………………….11
2.6 等位函數法……………………………………………….12
2.6.1 等位函數法之原理………………………………..13
2.6.2 等位函數方程式…………………………………..14
2.6.3 等位函數之重距離化……………………………..15
第三章 數值方法………………………………………………………17
3.1 網格配置………………………………………………….17
3.2 等位函數方程式………………………………………….17
3.2.1 Weighted Essentially Non-Oscillatory (WENO)
Schemes…………………………………………....18
3.2.2 Total Variation Diminishing(TVD) Runge-Kutta
Schemes……………………………………………21 3.3 等位函數之重距離化…………………………………….21
3.4 等位函數之重距離化的收斂標準……………………….22
3.5 初始等位函數的設定…………………………………….23
3.6 電場之計算……………………………………………….24
3.7 工件外型的演進………………………………………….25
3.8 刀具進給………………………………………………….25
3.9 計算流程………………………………………………….26
第四章 結果與討論……………………………………………………28
4.1 三種刀具類型之比較…………………………………….29
4.2 加工電壓的影響………………………………………….32
4.3 刀具進給速度的影響…………………………………….33
4.4 電解液導電度的影響…………………………………….35
4.5 脈衝的影響……………………………………………….36
4.6 初始間隙的影響………………………………………….36
第五章 結論與未來展望………………………………………………38
5.1 結論……………………………………………………….38
5.2 未來展望………………………………………………….39
參考文獻………………………………………………………………..40
附錄A…………………………………………………………………..47
附錄B…………………………………………………………………..49
參考文獻 [1] 佐藤敏ㄧ, 賴耿陽, 金屬腐蝕加工技術, 復漢出版社(1986).
[2] 木本康雄, 賴耿陽, 精密加工之電學應用, pp.93-122, 復漢出版社(1982).
[3] A.H. Meleka and D.A. Glew, “Electrochemical Machining,” Review 221, Internal Metals Review, Sept., pp. 229-252(1977).
[4] 許坤明, 非傳統加工, Chapter 3, 全華科技圖書股份有限公司(2005).
[5] J.F. Thorpe and R.D. Zerkle, “Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by Electrochemical Machining,” Electrochemical Society, Princeton, pp. 1-39(1971).
[6] A.L. Krylov, Soviet Phys. Doklady Vol. 13, pp. 15(1968).
[7] J.A. McGeough, Principles of Electrochemical Machining, Chapman and Hall, London(1974).
[8] V.K. Jain and P.C. Pandey, “Tooling Design for ECM,” Precision Engineering, Vol. 2, No. 4, pp. 195-206(1980).
[9] D.E. Collete, R.C. Hewson-Browne and D.W. Windle,“A Complex Variable Approach to Electrochemical Machining Problems,” Journal of Engineer Mach., Vol. 4, pp. 29-37(1970).
[10] R.C. Hewson-Browne, “Further Applications of Complex Variable Methods to Electrochemical Machining Problems,” Journal of Engineering Math., Vol. 4, pp. 233-240(1971).
[11] L.W. Hourng and C.S. Chang, “Numerical Calculation of Electrochemical Drilling,” Journal of Applied Electrochemistry,Vol. 23, pp. 316-321(1993).
[12] L.W. Hourng and C.S. Chang,“Numerical Simulation of Two dimension Fluid Flow Electrochemical Drilling,” Journal of Applied Electrochemistry, Vol. 24, pp. 1170-1175(1994).
[13] H. Hocheng, Y.H. Sun, S.C. Lin and P.S. Kao, “A material Removal Analysis of Electrochemical Machining Using Flat-End Cathode,” Journal of Materials Processing Technology, Vol. 140, pp. 264-268(2003).
[14] S. Das and A.K. Mitra, “Use of Boundary Element Method for the Determination of Tool Shape in Electrochemical Machining,” International Journal for Numerical Methods in Engineering, Vol. 35, pp. 1045-1054(1990).
[15] R. Hunt, “An Embedding Method for the Numerical Solution of the Cathode Design Problem in Electrochemical Machining,” International Journal for Numerical Methods in Engineering, Vol. 29, pp. 1177-1192(1990).
[16] 陳志誠, “電化學加工刀具之設計”, 國立中央大學機械研究所碩士論文(1990).
[17] 蔡蒼和, “反求法在電化學加工刀具設計上之應用,” 國立中央大學機械研究所碩士論文(1995).
[18] S. Bhattacharyya, A. Ghosh and A.K. Mallik, “Cathode Shape Prediction in Electrochemical Machining Using a Simulated Cut-and-Try Procedure,” Journal of Materials Processing Technology, Vol. 66, pp. 146-152(1997).
[19] C.S. Chang, L.W. Hourng and C.T. Chung, “Tool Design in Electrochemical Machining Considering the Effect of Thermal-Fluid Properties,” Journal of Applied Electrochemistry, Vol. 29, pp. 321-330(1999).
[20] C.S. Chang and L.W. Hourng, “Two-Dimensional Two-Phase Numerical Model for Tool Design in Electrochemical Machining,” Journal of Applied Electrochemistry, Vol. 31, pp. 145-154(2001).
[21] V. Kirchner, X. Xia and R. Schuster, “Electrochemical Nanostructuring with Ultrashort Voltage Pulses,” Accounts of Chemical Research, Vol. 34, pp. 371-377(2001).
[22] S.H. Ahn, S.H. Ryu, D.K. Choi and C.N. Chu, “Electro-Chemical Micro Drilling Using Ultra Short Pulses,” Precision Engineering,Vol. 28, pp. 129-134(2004).
[23] J.A. Kenney and G.S. Hwang, “Electrochemical Machining with Ultrashort Voltage Pulses:Modelling of Charging Dynamics and Feature Profile Evolution,” Insttute of Physics Publishing, Nanotechnology, Vol. 16, pp. S309-S313(2005).
[24] J.A. Kenney and G.S. Hwang, “Etch Trends in Electrochemical Machining with Ultrashort Voltage Pulses,” Electrochemical and Solid-State Letters, Vol. 9, No. 1, pp. D1-D4(2006).
[25] J.A. Kenney and G.S. Hwang, “Computational Analysis of Intratool Interactions in Electrochemical Micromachining with Multitip Tool Electrodes,” Electrochemical and Solid-State Letters, Vol. 9, No. 9, pp. D21-D23(2006).
[26] Y.F. Luo, “Differential Equation for the Ultra-Fast Transient Migration in Electrolytic Dissolution,” Electrochemistry Communications, Vol. 8, pp. 353-358(2006).
[27] D. Zhu and H.Y. Xu, “Improvement of Electrochemical Machining Accuracy by Using Dual Pole Tool,” Journal of Materials Processing Technology, Vol. 129, pp. 15-18(2002).
[28] 楊昌融, “微電化學加工參數之最佳化設計及評估” , 國立中央大學機械研究所碩士論文(2003).
[29] E. Javierre, C. Vuik, F.J. Vermolen and S. van der Zwaag, “A Comparison of Numerical Models for One-Dimensional Stefan Problems,” Journal of Computational and Applied Mathematics, Vol. 192, pp. 445-459(2006).
[30] J.A. Sethian, Level Set Method, Cambridge University Prees (1996).
[31] S. Osher and J.A. Sethian, “Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” Journal of Computational Physics, Vol. 79, pp. 12-49(1988).
[32] 何昌憲, “等位函數法在影像切割之研究,” 國立交通大學資訊科學系碩士論文(2005).
[33] 李俞融, “以適應性多重等階集合法做彩色影像分割,” 國立中央大學資訊工程研究所碩士論文(2005).
[34] S. Chen, B. Merriman, S. Osher and P. Smererka, “A Simple Level Set Method for Solving Stefan Problems,” Journal of Computational Physics, Vol. 135, pp. 8-29(1997).
[35] 廖清標, “以等位函數法求解含自由液面之流場,” 逢甲大學土木及水利工程研究所碩士論文(2002).
[36] M. Sussman, P. Smereka and S. Osher, “A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow,” Journal of Computational Physics, Vol. 114, pp. 146-159(1994).
[37] M. Sussman, E. Fatemi, P. Smereka and S. Osher, “An Improved Level Set Method for Incompressible Two-Phase Flows,” Computer & Fluids, Vol. 27, pp. 663-680(1998).
[38] 何易展, “細胞顯微影像之分割、追蹤與運動分析,” 國立成功大學資訊工程學系碩士班碩士論文(2002).
[39] X.D. Liu, S. Osher and T. Chan, “Weighted Essentially Non-Oscillatory Schemes,” Journal of Computational Physics, Vol. 115, pp. 200-212(1994).
[40] G.S. Jiang and C.W. Shu, “Efficient Implementation of Weighted ENO Schemes,” Journal of Computational Physics, Vol. 126, pp. 202-228(1996).
[41] G.S. Shan and D. Peng, “Weighted ENO Schemes for Hamilton-Jacobi Equations,” SIAM Journal on Scientific Computing, Vol. 21, No. 6, pp. 2126-2143(2000).
[42] S. Gottlieb and C.W Shu, “Total Variation Diminishing Runge-Kutta Schemes,” Mathematics of Computation, Vol. 67, No. 221, pp. 73-85(1998).
[43] C.W. Shu, “Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes,” Journal of Computational Physics, Vol. 77, pp. 439-471(1988).
[44] K.A. Hoffmann and S.T. Chiang, Comptational Fluid Dynamics for Engineers, Volume I, Engineering Education System, pp. 162-163(1993).
指導教授 洪勵吾(Li-wu Hung) 審核日期 2007-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明