博碩士論文 943203062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:13.59.51.100
姓名 簡思佳(Szu-Chia Chien)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 剪力槽內大小顆粒體的分離研究
(The segregation of different size particles in a shear cell)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近來顆粒體的混合與分離在一般日常生活與工業技術上皆有廣泛且重要的發展,剪力槽內粒子流的相關研究大多著重於混合與傳輸機制,顆粒體分離現象方面,只要顆粒體尺寸、密度上有些微的差異就足以產生不同的顆粒體分離現象。
本文主要以剪力槽中粒子流動的實驗來探討轉盤的切線速度、粒徑比及顆粒初始配置對大小顆粒體分離的影響。本文所使用的剪力槽是上盤固定、下盤轉動的環形槽,實驗中有0.66m/s、0.88m/s、1.10m/s、1.32m/s及1.54 m/s等五種不同的轉盤的切線速度,大小顆粒的粒徑比有1.15、1.33、1.5及2.0等四種。當底盤轉動後,剪力槽內會形成大顆粒往上、小顆粒往下的分離現象。本文的實驗即以追蹤大顆粒的位置來分析大顆粒的平均高度及濃度分佈,並且定義出分離強度Is,以作為衡量分離現象的指標。由實驗的結果分析顯示,各種實驗條件下,分離強度隨著時間的增加而增強,並且呈指數關係成長,因此可利用曲線擬合算出初始階段分離的速率,即分離率k。當轉盤的切線速度越快或粒徑比越大時,分離率越快且可達到較高的分離強度;所以在本研究粒徑比範圍內推斷出影響分離現象為粒徑比較顯著於底盤速度。
摘要(英) In this study, an annular shear cell is used to investigate the influences of bottom velocity, diameter ratio and initial pattern arrangement on the segregation of particles with different sizes. The annular shear cell is consisted of a stationary top-disk and a rotating bottom-disk. Five bottom-disk velocities (0.66 m/s, 0.88 m/s, 1.10 m/s, 1.32 m/s and 1.54 m/s) and four diameter ratio (1.15, 1.33, 1.5 and 2.0) are used in our experiments. With the rotating bottom-disk, the big particles move to the upper section, while the small particles fall down to the lower section. This study traces the positions of big particles to analyze their averaged heights and concentration profiles. The segregation strength, Is, is defined as an index to quantify the degree of segregation. In all cases, the segregation strength increases exponentially with increasing rotating time. The segregation rate, k, at initial stage can be calculated from a least square curve fitting. With larger bottom-disk velocity or larger diameter ratio, the segregation rate is faster, and the segregation strength of steady status is also larger.
關鍵字(中) ★ 顆粒
★ 分離強度
★ 剪力槽
★ 分離率
關鍵字(英) ★ segregation rate.
★ segregation strength
★ particle
★ shear cell
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
符號說明 xii
第一章 簡介 - 1 -
1.1粒子流簡介 - 1 -
1.2剪力流研究歷史 - 3 -
1.3分離現象研究 - 5 -
1.3.1分離效應 - 5 -
1.3.2 表面流的分離現象 - 8 -
1.3.2.1放射狀分離 - 8 -
1.3.2.2剪力層分離 - 8 -
1.3.2.3軸向分離 - 8 -
1.3.3 量測分離的技術 - 9 -
1.3.4剪力槽中顆粒的分離 - 10 -
1.4研究方向與架構 - 12 -
1.4.1研究動機 - 12 -
1.4.2研究目的 - 13 -
第二章 實驗方法 - 14 -
2.1 實驗設備 - 14 -
2.1.1 剪力槽裝置 - 14 -
2.1.2 顆粒體 - 16 -
2.1.3 觀測及量測儀器 - 17 -
2.1.3.1數位式電子秤(Electronic Weighing Scale)- 17 -
2.1.3.2測頻器(Digital Tachometer) - 17 -
2.1.3.3測高器 - 18 -
2.1.3.4影像擷取系統 - 18 -
2.1.3.5光源 - 19 -
2.2 實驗原理與方法 - 20 -
2.2.1 影像處理分析方法 - 20 -
2.3分離指標(Segregation Indices) - 21 -
2.4 實驗步驟 - 22 -
2.5 誤差校正 - 25 -
2.5.1 誤差來源 - 25 -
2.5.2 誤差校正 - 25 -
第三章 結果與討論 - 26 -
3.1 大小粒子的位置分佈圖 - 29 -
3.2 濃度隨剪力槽高度與時間變化的關係 - 33 -
3.3 分離強度、粒徑比、轉盤的切線速度的不同隨時間變化的關係 - 43 -
3.3.1 轉盤的切線速度對分離的影響 - 43 -
3.3.2 粒徑比對分離的影響 - 47 -
3.4分離率 - 52 -
3.5 初始配置的不同對分離的影響 - 60 -
第四章 結論 - 65 -
4.1 結論 - 65 -
4.2未來發展 - 66 -
參考文獻 - 67 -
參考文獻 [1] Luu, C.K.K., Savage, S.B., Jeffrey, D.J. and Chepurniy, N., 1984,
“ Kinetic Theories for Granular Flow: Inelastic Particle in Couette Flow and Slightly Inelastic Particles in a General Flowfield ,” J.Fluid Mech., Vol. 140,pp. 223-256.
[2] Jaeger, H.M. and Nagel, S.R., 1992, “ Physics of the Granular State ,” Science, Vol. 30. pp. 949-980.
[3] Herrmann, H.J., 1999, “ Statistical Models for Granular Materials .” Physica A, Vol. 263, pp. 51-62.
[4] Wang, D.G. and Campebll, C.S., 1992, “ Reynolds Analogy for a Shearing Granular Materials .” J. Fluid Mech., Vol. 244, pp. 527-546.
[5] Campbell, C.S., 1990, “ Rapid Granular Flows .” Annu. Rev. Fluid Mech., Vol. 22, pp. 57-92.
[6] Hvorslev, M.J., 1939, “ Torsion Shear Tests and Their Place in the Determination of Shearing Resistance of Soils .” Proc. ASTM, Vol. 39, pp. 999-1022.
[7] Novosad, J., 1964, “ Apparatus for Measuring the Dynamic Angles of Internal Friction and External Friction of a Granular Material .” Collection Czech. Chem. Commun., Vol. 29, pp. 2697-2701.
[8] Scarlett, B. and Todd, A.C., 1968, “ A Split Ring Annular Shear Cell for Determination of the Shear Strength of a Powder .” Sci. Instr., Vol. 1, pp. 655-656.
[9] Scarlett, B. and Todd, A.C., 1969, “ The Critical Porosity of Free Flowing Solids .” Trans. ASME B: J. Engng Ind., Vol. 91, pp. 478-488.
[10] Mandl, G., De Jong. L. N. J. and Maltha, A., 1977, “ Shear Zones in Granular Material .” Rock Mech., Vol. 9, pp. 95-144.
[11] Stephens, D.J. and Bridgwater, J., 1978a, “ The Mixing and Segregation of Cohesionless Particulate Materials. Part I. Failure Zone Formation .” Powder Tech., Vol. 21, pp. 17-28.
[12] Stephens, D.J. and Bridgwater, J., 1978b, “ The Mixing and Segregation of Cohesionless Particulate Materials. Part II. Microscopic Mechanisms for Particles Differing in size .” Powder Tech., Vol. 21, pp. 29-44.
[13] Bagnold, R.A., 1954, “ Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid Under Shear .” Proc. R. Soc. London, Ser. A, Vol. 225, pp. 49-63.
[14] Thompson, P.A. and Grest, G.S., 1991, “ Granular Flow and the Dilatancy Transition .” Phys. Rev. Lett., Vol. 67, pp. 1751-1754.
[15] Nasuno, S., Kudrolli, A., Bak, A. and Gollub, J.P., 1998, “ Time-Resolved Studies of Stick-Slip Friction in Sheared Granular Layers .” Phys. Rev. E, Vol. 58, pp. 2161-2171.
[16] Hsiau, S.S. and Yang, W.L., 2002, “ Stress and Transport Phenomena in Sheard Granular Flows with Different Wall Condition .” Phys. Fluid, Vol. 14, No. 2, pp. 612-621.
[17] Kenneth E. Elliott, Goodarz Ahmadi, William Kvasnak, 1997, “ Couette flows of a granular monolayer-an experimental study .” J. Ncn-Newtonian Fluid Mech., 74(1998) 89-111.
[18] Williams, J.C., 1976, “ The Segregation of Particulate Materials – a Review .” Powder Tech., Vol. 15, pp. 245-251.
[19] Rosato, A., Prinze, F., Standburg, K.J. and Svendsen, R., 1987, “ Why Brazil Nuts are on Top: Size Segregation of Particulate Matter by Shaking .” Phys. Rev. Lett., Vol. 58, pp. 1038-1040.
[20] Donald, M. B. and Roseman, B., 1962, ”Mixing and Demixing of Solid Particles. Part 1. Mechanisms in a Horizontal Drum Mixer.” Br.Chem. Eng., Vol. 7, pp. 749-752.
[21] Lawrence, L. R. and Beddow, J. K., 1969, “ Powder Segregation During Die Filling .” Powder Technol., v2. issue 5. p253-259.
[22] Stephen, L. Conway, Xue Liu, Benjamin J. Glasser, 2006,“ Instability-induced clustering and segregation in high-shear Couette flows of model granular materials .” Chemical Engineering Science 61. 6404-6423.
[23] Hutter, K. and Savage, S.B., 1986, “ Euromech colloquium: Applications of the mechanics of granular materials in geophysics, partⅡ .” Acta Mechanica, v 64, n 1-2, Dec, 1986, 122p.
[24] Mosby, J., de Silva, S.R. and Enstad, G.G., 1996, “ Segregation of Particulate Materials – Mechanisms and Testers .” KONA, No. 14, pp. 31-42.
[25] Johanson, J.R., 1988, “ Solids Segregation-Causes and Solutions .” Powder and Bulk Eng., pp. 13-19.
[26] Ristow, G. H., 1994, “Particle Mass Segregation in a Two-Dimensional Rotating Drum.” Europhys. Lett., Vol. 28, pp. 97-101.
[27] Dury, C.M. and Ristow, G.H., 1997, ” Radial Segregation in a Two-Dimensional Rotating Drum .” J. Phys. I, France, Vol. 7, pp. 737-745.
[28] Ottino, J.M. and Khakhar, D.V., 2000, “ Mixing and Segregation of Granular Materials .” Annu. Rev. Fluid Mech., Vol. 32, pp. 55-91.
[29] Cooke, M.H. and Bridgwater, J., 1979,” Interparticle Percolation: A Statistical Mechanical Interpretation .” I&EC Fundam., Vol. 18, pp. 25-27.
[30] Bridgwater, J., Foo, W.S. and Stephens, D.J., 1985, “ Particle Mixing and Segregation in Failure Zones-Theory and Experiment .” Powder Tech., Vol. 41, pp. 147-158.
[31] Choo, K., Molteno, T.C. A. and Morris, S.W., 1997, “ Travelling Tranular Segrega- tion Patterns in a Long Drum Mixer .” Phys. Rev. Lett., Vol. 79, pp. 4994-4997.
[32] Harris, J. F. G. and Hildon, A. M., 1970, “ Reducing Segregation in Binary Powder Mistures with Particular Reference to Oxygenated Washing Powders .” Ind. Eng. Chem. Process Des. Dev., 9. 363-7.
[33] Mohammad, Asif., 1998, “Segregation Velocity model for Fluidized Suspension of Binary Mixture of Particles.” Chem. Eng. And Process. March., 37. 279-286.
[34] Campbell, C. S., 1989, “The Stress Tensor for Simple Shear Flow of a Granular Material.” J. Fluid Mech., Vol. 203,pp. 449-473.
[35] Scott, A. M. and Bridgwater, J., 1975, “Interparticle Percolation: A Fundamental Solids Mixing Mechanism.” Ind. Eng. Chem. Fundam., Vol. 14. No.1,pp. 22.
[36] Shinohara, Knion, Shoji, Kazumori, Tanaka and Tatsuo, 1970,” Mechanism of Segregation and Blending of Particles Flowing Out of Mass-Flow Hoppers .” Ind. Eng. Chem. Process Des. Dev.,9. p174-80.
[37] Hirshfeld, D. and Rapaport, D.C., 1997, “ Molecular Dynamics Studies of Grain Segregation in Sheared Flow .” Physical Review E volume 56, number2.
[38] Hongming, L. and McCarthy, J. J., 2006, “Cohesive Particle Mixing and Segregation Under Shear.” Powder Technol., 164. pp. 58-64.
[39] Olsen, J.L. and Rippie, E.G., 1964, “ Segregation Kinetics of Particulate Solids Systems.Ⅰ.Influence of Particle Size and Particle Size Distribution .” J. Pharm. Sci., Vol. 53, pp. 147-150.
[40] Rippie, E.G., Olsen, J.L. and Faiman, M.D., 1964, “ Segregation Kinetics of Particulate Solids Systems.Ⅱ.Paticles Density – Size Interactions and Wall Effects .” J. Pharm. Sci., Vol. 52, pp. 1360-1363.
[41] Barbosa-Canovas, G., Malave-Lopez,J. and Peleg, M., 1985, “ Segregation in Food Powders .” Biotechnol. Prog., Vol. 1, pp. 140-146.
[42] Popplewell, L.M., Campanella, O.H., Sapru, V. and Peleg, M., 1989, “ Theoretical Comparison of Two Segregation Indices for Binary Powder Mixtures .” Powder Tech., Vol. 58, pp. 55-61.
[43] Hsiau, S.S. and Shieh, Y.H., 1999, “ Fluctuations and Self-Diffusion of Sheared Granular Material Flows .” J. Rheol., Vol. 43, pp. 1049-1066.
[44] Bridgwater, J.,Cooke, M.H. and Scott, A.M., 1978, “ Interparticle Percolation: Equipment Development and Mean Percolation Velocities. “ Trans. Inst. Chem. Eng., Vol. 56,pp. 157-167.
[45] Tang, P. and Puri, V.M., 2004, “ Methods for Minimizing Segregation: A Review .” Particulate Sci. & Tech., Vol. 22, pp. 321-337.
[46] Bridgwater, J., 1994,” Mixing and Segregation Mechanisms in Particle Flow .” In Granular Material-An Interdisciplinary Approach, ed. By A. Mehta. New York: Springer-Verlag.pp. 161-193.
[47] Lu, L. S, and Hsiau, S. S., 2005, “Mixing in Vibrated Granular Beds with The Effect of Electrostatic Force.” Powder Tech.,160. pp. 170-179.
[48] 蕭述三, 黃俊豪, 2006年7月, “ 剪力流中分離現象研究 “
中央機械工程研究所碩士論文
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2007-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明