參考文獻 |
1. C. Lasance, Technical Data column, ElectronicsCooling, January 1997: http://www.electronics-cooling.com/articles/1997/
1997_Jan_TechData1.pdf.
2. J. Bintoro, "A closed loop impinging jet cooling for computer chip," IMECE2003, Washington D.C., (2003), Paper 43865.
3. D.B. Tuckerman and R.F.W. Pease, “High performance heat sink for VLSI,” IEEE Elecctron Device Letter, EDL-2 (5) (1981), 126-129.
4. L. Jiang, J. Mikkelsen, J.-M. Koo, D. Huber, S. Yao, L. Zhang, P. Zhou, J.G. Maveety, R. Prasher, J.G. Santiago, T.W. Kenny, and K.E. Goodson, “Closed-loop electroosmotic microchannel cooling system for VLSI circuits,” IEEE Transaction on Components and Packaging Technologies, 25 (3) (2002), 347-353.
5. S. Zeng, C. H. Chen, J. C. Mikkelsen Jr., and J.G. Santiago, “Fabrication and characterization of electroosmotic micropumps,” Sensors and Actuators B, 79 (2001), 107-114.
6. S. Yao, D.E. Hertzog, S. Zeng, J.C. Mikkelsen Jr., and J.G. Santiago, “Porous glass electroosmotic pumps: design and experiments,” J. Colloid and Interface Science, 268 (2003), 143–153.
7. L. Chen, J. Ma, F. Tan, and Y. Guan, “Generating high-pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems”, Sensors and Actuators B, 88 (2003), 260-265.
8. D.J. Laser and J.G. Santiago, “A review of micropumps,” J. Micromech. Microeng., 14 (2004), R43-R49.
9. N.T. Nguyen, X. Huang, and T.K. Chuan, “MEMS- Micropumps: A Review,” J. Fluids Eng., 124 (2002), 384-392.
10. V. Singhal, S.V. Garimella, and A. Raman, “Microscale pumping technologies for microchannel cooling systems,” ASME Appl Mech Rev., 57(4) (2004), 191-221.
11. L. Chen, J. Ma, and Y. Guan, “An electroosmotic pump for packed capillary liquid chromatography,” J. Microchemical., 75 (2003), 15–21.
12. L. Chen, H. Wang, J. Ma, C. Wang, and Y. Guan, “Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery”, Sensors and Actuators B, 104 (2005), 117-123.
13. S. Yao, D. Huber, J.C. Mikkelsen, and J.G. Santiago, “A large flowrate electroosmotic pump with micron pores”, 2001 ASME International Mechanical Engineering Congress and Exposition., New York (2001), 11-16.
14. S. Yao, A.M. Myers, J.D. Posner, K.A. Rose, and J.G. Santiago, “Electroosmotic Pumps Fabricated From Porous Silicon Membranes”, J. Microelectromechanical Systems, 15 (2006), 717-728.
15. A. Ajdari, “Pumping liquids using asymmetric electrode arrays”, Phys. Rev. E, 61 (2000), 45-48.
16. V. Studer, A. Pepin, Y. Chen, and A. Ajdari, “Fabrication of microfluidic devices for AC electrokinetic fluid”, Microelectronic Engineering 61–62 (2002), 915–920.
17. K. Seibel, H. Schafer, V. Koziy, D. Ehrhardt, and M. Bohm, “Transport Properties of AC Electrokinetic Micropumps on Labchips”, Proc. MNE Micro and Nano Engineering Conference, Cambridge, UK, (2003), 22-25.
18. A. Brask, D. Snakenborg, J.P. Kutter, and H. Bruus, “AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves”, Lab on A Chip, 6 (2006), 280-288.
19. S. Liu , Q. Pu, and J.J. Lu, “Electric field-decoupled electroosmotic pump for microfluidic devices,” J. Chromatography A, 1013 (2003), 57–64.
20. A. Brask, J.P. Kutter, and H. Bruus, “Long-term stable electroosmotic pump with ion exchange membranes”, Lab on A Chip, 5 (2005), 730-738.
21. M. Norman, R.D. Noble, and C.A. Koval, “Electrochemical pumping of DMF electrolyte solutions across membranes”, J. Electro- chemical Society, 151 (12) (2004), E364-E369.
22. M.A. Norman, C. E. Evans, A. R. Fuoco, R. D. Noble, and C. A. Koval, “Characterization of a membrane-based, electrochemically driven pumping system using aqueous electrolyte solutions”, Anal. Chem., 77 (2005), 6374-6380.
23. C.E. Evans, R.D. Noble, and C.A. Koval, “A nonmechanical, membrane-based liquid pressurization system”, Ind. Eng. Chem. Res. 45 (2006), 472-475.
24. 陳民彥,電滲泵的製作與性能測試,國立中央大學機械工程研究所碩士論文,(2005)。
25. 陳民彥、吳俊諆、李俊鵬,電滲泵的製作與性能測試,中國機械工程學會第二十二屆全國學術研討會論文集,中壢‧臺灣,(2005)。
26. B.J. Kirby and E. F. Hasselbrink Jr. “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis, 25 (2004), 187–202.
27. B.J. Kirby and E. F. Hasselbrink Jr. “Zeta potential of microfluidic substrates: 2. Data for polymers,” Electrophoresis, 25 (2004), 203–213.
28. K.D. Altria, Capillary Electrophoresis Guidebook: Principles, Operation, and Applications, Humana Press, (1996).
29. A. Brask, Electroosmotic micropumps, Department of Micro and Nanotechnology, Technical University of Denmark, (2005).
30. 溫添進、張憲彰、胡啟章,鎳鈀及鉑電極之電化學特性,界面科學會誌,27 (2005), 255-266。
31. G.Y. Tang, C. Yang, J.C. Chai, and H.Q. Gong "Joule heating effect on electroosmotic flow and mass species transport in a microcapillary." Inter. J. Heat and Mass Transfer, 47 (2004), 215-227.
32. G. Chen and U. Tallarek, A. Seidel-Morgenstern, and Y. Zhang, “Influence of moderate Joule heating on electroosmotic flow velocity, retention and efficiency in capillary electrochromatography,” J. Chromatography A, 1044 (2004), 287-294.
33. H.C. Chang, “Bubble/drop transport in microchannels,” The MEMS Handbook, CRC Press, (2001), chapter 11.
34. K.A. Dunphy Guzman, Rohit N. Karnik, J. S. Newman, and A.Majumdar, “Spatially controlled microfluidics using low-voltage electrokinetics,” J. Microelectromechanical System, 15 (2006), 237-245.
35. S. Yao and J.G. Santiago, “Porous glass electroosmotic pumps: theory”, J. Colloid and Interface Science, 268 (2003), 133-142.
36. P. Wang, Z. Chen, and H.C. Chang, “A new electro-osmotic pump based on silica monoliths”, Sensors and Actuators B, 113 (2006), 500–509. |