博碩士論文 943203102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.119.167.189
姓名 賴俊伯(Chun-po Lai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 無動件式高流率電滲泵的製作與特性分析
(Fabrication and Performance Study of High Flow Rate Electroosmotic Pump)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 微電滲泵之暫態熱流研究
★ 高解析熱氣泡式噴墨頭墨滴成形觀測★ 電滲泵之焦耳熱效應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以燒結矽多孔介質製作一高流率的小型電滲泵(electroosmotic pump, EOP),以燒結矽濾材的多孔介質作為微流道傳輸液體,濾材直徑有二種(D=4, 2.5 cm),流道孔隙直徑約1-2 μm。此種無動件泵以電雙層(electrical double layer)效應驅動流體,可產生高壓和高流率。我們使用不同濃度(0.5-4 mM)、不同酸鹼值(pH 7.6-9.2) 的硼酸鹽水溶液為工作流體並以不同電壓(25-250 V)進行性能測試。濃度與pH值越高的工作流體能產生的流率越高。電滲泵(D=4 cm)於工作電壓250 V,可產生最大流率Qmax=32 ml/min、最大壓力差Pmax=128 kPa、每單位面積電壓產生的流率Qmax/(AV)=0.012 ml/min/(V.cm2)。
因電解反應隨著電壓增加而增強,在電極附近有氫、氧氣泡產生。藉由加入離子交換膜(Nafion)與透析膜能降低氣泡對流體傳輸的不利影響,此外使用不銹鋼電極取代負極的白金電極也能有效的壓抑氣泡,最大流率可提升15%。以並聯2片濾材(D=2.5 cm)的方式設計製作電滲泵,流率可增加2倍。縮短二電極距離增加電場強度可提升流率,於工作電壓200 V量測泵的性能如下:Qmax=18.6 ml/min、Pmax=210 kPa和Qmax/(AV)=0.023 ml/min/(V.cm2)。此電滲泵能持續不間斷的運作10小時,顯示其有相當的可靠度。
摘要(英) A high flowrate electroosmotic (EO) pump is fabricated from a porous sintered silica frit (two sizes with diameter D=4, 2.5 cm) as tortous microchannels (pore diameter about 1-2 μm) to transport liquid. This EO pump has no moving part, which utilizes the electric double layer (EDL) effect as driving force, can generate high back pressure and large flow rate. The working fluid is the borate solution with various range of concentrations (C=0.5-4 mM) and pH value (7.6-9.2). Moderate range of voltages (V=25-250 V) is applied to the electrode. The solution with high concentration and pH vlaue result in high flowrate. The EO pump (D=4 cm) generates maximum flowrate Qmax=32 ml/min, maximum pressure Pmax=128 kPa, and a maximum flow rate per area and per voltage Qmax/(AV)=0.012 ml/min/(V.cm2) at 250 V applied voltage.
Due to the electrolysis reaction in the solution, bubbles (hydrogen and oxigen) generate near the electrode as the applied voltage increase, and that may retard the flow transport. Several approaches are utilized to reduce bubbles flow into downstream of EO pump, including insert the Nafion and dialysis membrane in the cathode chamber and replace the Pt electrode with the stainless steel elctrode. Overall, the flowrate is increased about 15%. Next, the EO pump with smaller porous frit (D=2.5 cm) is tested. The flowrate of EO pump increase twofold by connect two units of frit in parallel. By decreasing the distance of electrode-pair the electrical field strength increase, and the pump performance enhance too, with Qmax=18.6 ml/min, Pmax=210 kPa, and Qmax/(AV)=0.023 ml/min/(V.cm2). This EO pump can continuously run for 10 hours, which show its reliability.
關鍵字(中) ★ 電滲泵
★ 燒結矽多孔介質
關鍵字(英) ★ porous sintered silica frit
★ electroosmotic pump
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
符號表 VIII
第一章 緒論 1
1.1研究動機 1
1.2 各式微泵介紹 2
1.3 文獻回顧 4
1.4 研究目的 8
第二章 電滲泵工作原理 10
2.1 電滲流理論 10
2.2 工作流體特性與電滲流的關係 13
2.2.1界面電位勢 13
2.2.2電雙層特徵厚度 14
第三章 電滲泵設計製作 16
3.1 電滲泵製作 16
3.2 實驗設備 17
3.3 實驗材料 17
3.3.1溶液配置 17
3.3.2多孔介質 18
3.3.3離子交換膜與透析膜 18
3.3.4電極 19
3.4 實驗方法與步驟 20
第四章 結果與討論 22
4.1 流率 22
4.2 壓力 26
4.3 泵可靠度與實驗重現性 27
4.4 泵性能探討與比較 28
第五章 結論 31
5.1結論 31
5.2未來改進方向 32
參考文獻 34
參考文獻 1. C. Lasance, Technical Data column, ElectronicsCooling, January 1997: http://www.electronics-cooling.com/articles/1997/
1997_Jan_TechData1.pdf.
2. J. Bintoro, "A closed loop impinging jet cooling for computer chip," IMECE2003, Washington D.C., (2003), Paper 43865.
3. D.B. Tuckerman and R.F.W. Pease, “High performance heat sink for VLSI,” IEEE Elecctron Device Letter, EDL-2 (5) (1981), 126-129.
4. L. Jiang, J. Mikkelsen, J.-M. Koo, D. Huber, S. Yao, L. Zhang, P. Zhou, J.G. Maveety, R. Prasher, J.G. Santiago, T.W. Kenny, and K.E. Goodson, “Closed-loop electroosmotic microchannel cooling system for VLSI circuits,” IEEE Transaction on Components and Packaging Technologies, 25 (3) (2002), 347-353.
5. S. Zeng, C. H. Chen, J. C. Mikkelsen Jr., and J.G. Santiago, “Fabrication and characterization of electroosmotic micropumps,” Sensors and Actuators B, 79 (2001), 107-114.
6. S. Yao, D.E. Hertzog, S. Zeng, J.C. Mikkelsen Jr., and J.G. Santiago, “Porous glass electroosmotic pumps: design and experiments,” J. Colloid and Interface Science, 268 (2003), 143–153.
7. L. Chen, J. Ma, F. Tan, and Y. Guan, “Generating high-pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems”, Sensors and Actuators B, 88 (2003), 260-265.
8. D.J. Laser and J.G. Santiago, “A review of micropumps,” J. Micromech. Microeng., 14 (2004), R43-R49.
9. N.T. Nguyen, X. Huang, and T.K. Chuan, “MEMS- Micropumps: A Review,” J. Fluids Eng., 124 (2002), 384-392.
10. V. Singhal, S.V. Garimella, and A. Raman, “Microscale pumping technologies for microchannel cooling systems,” ASME Appl Mech Rev., 57(4) (2004), 191-221.
11. L. Chen, J. Ma, and Y. Guan, “An electroosmotic pump for packed capillary liquid chromatography,” J. Microchemical., 75 (2003), 15–21.
12. L. Chen, H. Wang, J. Ma, C. Wang, and Y. Guan, “Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery”, Sensors and Actuators B, 104 (2005), 117-123.
13. S. Yao, D. Huber, J.C. Mikkelsen, and J.G. Santiago, “A large flowrate electroosmotic pump with micron pores”, 2001 ASME International Mechanical Engineering Congress and Exposition., New York (2001), 11-16.
14. S. Yao, A.M. Myers, J.D. Posner, K.A. Rose, and J.G. Santiago, “Electroosmotic Pumps Fabricated From Porous Silicon Membranes”, J. Microelectromechanical Systems, 15 (2006), 717-728.
15. A. Ajdari, “Pumping liquids using asymmetric electrode arrays”, Phys. Rev. E, 61 (2000), 45-48.
16. V. Studer, A. Pepin, Y. Chen, and A. Ajdari, “Fabrication of microfluidic devices for AC electrokinetic fluid”, Microelectronic Engineering 61–62 (2002), 915–920.
17. K. Seibel, H. Schafer, V. Koziy, D. Ehrhardt, and M. Bohm, “Transport Properties of AC Electrokinetic Micropumps on Labchips”, Proc. MNE Micro and Nano Engineering Conference, Cambridge, UK, (2003), 22-25.
18. A. Brask, D. Snakenborg, J.P. Kutter, and H. Bruus, “AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves”, Lab on A Chip, 6 (2006), 280-288.
19. S. Liu , Q. Pu, and J.J. Lu, “Electric field-decoupled electroosmotic pump for microfluidic devices,” J. Chromatography A, 1013 (2003), 57–64.
20. A. Brask, J.P. Kutter, and H. Bruus, “Long-term stable electroosmotic pump with ion exchange membranes”, Lab on A Chip, 5 (2005), 730-738.
21. M. Norman, R.D. Noble, and C.A. Koval, “Electrochemical pumping of DMF electrolyte solutions across membranes”, J. Electro- chemical Society, 151 (12) (2004), E364-E369.
22. M.A. Norman, C. E. Evans, A. R. Fuoco, R. D. Noble, and C. A. Koval, “Characterization of a membrane-based, electrochemically driven pumping system using aqueous electrolyte solutions”, Anal. Chem., 77 (2005), 6374-6380.
23. C.E. Evans, R.D. Noble, and C.A. Koval, “A nonmechanical, membrane-based liquid pressurization system”, Ind. Eng. Chem. Res. 45 (2006), 472-475.
24. 陳民彥,電滲泵的製作與性能測試,國立中央大學機械工程研究所碩士論文,(2005)。
25. 陳民彥、吳俊諆、李俊鵬,電滲泵的製作與性能測試,中國機械工程學會第二十二屆全國學術研討會論文集,中壢‧臺灣,(2005)。
26. B.J. Kirby and E. F. Hasselbrink Jr. “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis, 25 (2004), 187–202.
27. B.J. Kirby and E. F. Hasselbrink Jr. “Zeta potential of microfluidic substrates: 2. Data for polymers,” Electrophoresis, 25 (2004), 203–213.
28. K.D. Altria, Capillary Electrophoresis Guidebook: Principles, Operation, and Applications, Humana Press, (1996).
29. A. Brask, Electroosmotic micropumps, Department of Micro and Nanotechnology, Technical University of Denmark, (2005).
30. 溫添進、張憲彰、胡啟章,鎳鈀及鉑電極之電化學特性,界面科學會誌,27 (2005), 255-266。
31. G.Y. Tang, C. Yang, J.C. Chai, and H.Q. Gong "Joule heating effect on electroosmotic flow and mass species transport in a microcapillary." Inter. J. Heat and Mass Transfer, 47 (2004), 215-227.
32. G. Chen and U. Tallarek, A. Seidel-Morgenstern, and Y. Zhang, “Influence of moderate Joule heating on electroosmotic flow velocity, retention and efficiency in capillary electrochromatography,” J. Chromatography A, 1044 (2004), 287-294.
33. H.C. Chang, “Bubble/drop transport in microchannels,” The MEMS Handbook, CRC Press, (2001), chapter 11.
34. K.A. Dunphy Guzman, Rohit N. Karnik, J. S. Newman, and A.Majumdar, “Spatially controlled microfluidics using low-voltage electrokinetics,” J. Microelectromechanical System, 15 (2006), 237-245.
35. S. Yao and J.G. Santiago, “Porous glass electroosmotic pumps: theory”, J. Colloid and Interface Science, 268 (2003), 133-142.
36. P. Wang, Z. Chen, and H.C. Chang, “A new electro-osmotic pump based on silica monoliths”, Sensors and Actuators B, 113 (2006), 500–509.
指導教授 吳俊諆(Jiunn-chi Wu) 審核日期 2007-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明