參考文獻 |
1. S. K. Hong, B. J. Kim, H. S. Park, Y. Park, S. Y. Yoon and T. I. Kim, “Evaluation of nanopipes in MOCVD grown (0001)GaN/Al2O3 by wet chemical etching,” Journal of Crystal Growth, Vol 191, pp. 275, (1998).
2. S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue- light-emitting diodes,” Applied Physsics Letters, Vol 64, pp. 1687, (1994).
3. Brian R. Pamplin ed., Crystal Growth., 2nd edition, Pergamon Press Ltd., 1980.
4. Pawel E. Tomaszewski, “Jan Czochralski-father of the Czochralski method,” Journal of Crystal Growth, Vol 236, pp. 1-4, (2002).
5. Jan Czochralski, “Ein neues Verfahren zur Messung der Kristallisation geschwindigheit der Metalle,” Z. Phys. Chemie, Vol 92, pp. 219, (1918).
6. G. K. Teal and J. B. Little, “Growth of germanium single crystals,” Physical Review, Vol 78, pp. 647, (1950).
7. H. E. Buckley, Crystal Growth., John Wiley and Sons Inc., New York, (1951).
8. H. J. Scheel and T. Fukuda, “The Development of Crystal Growth Technology,” Crystal Growth Technology, pp.3-14, (2003).
9. K. Nassau and L.G. Van Uitert, “Preparation of Large Calcium-Tungstate Crystals Containing Paramagnetic Ions for Maser Applications,” Journal of Applied Physics, Vol 31, pp. 1508, (1960).
10. 張克從和張樂潓,晶體生長,科學出版社,1981。
11. J. J. Derby and R.A. Brown, “Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growth Ⅰ. Simulation,” Journal of Crystal Growth, Vol 74, pp. 605-624, (1986).
12. J. J. Derby and R.A. Brown, “Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growth Ⅱ. Processing strategies,” Journal of Crystal Growth, Vol 75, pp. 227-240, (1986).
13. F. Dupret, Y. Ryckmans, P. Wouters and M. J. Crochet, “Numerical calculation of the global heat transfer in a Czochralski furnace,” Journal of Crystal Growth, Vol 79, pp. 84-91, (1986).
14. F. Dupret, P. Nicodeme, Y. Ryckmans, P. Wouters and M. J. Crochet, “Global modeling of heat transfer in crystal growth furnaces,” Int. J. Heat Mass Transfer, Vol 33, pp. 1849-1871, (1990).
15. N. Van den Bogaert and F. Dupret, “Dynamic global simulation of the Czochralski process Ⅰ. Principles of the method,” Journal of Crystal Growth, Vol 171, pp. 65-76, (1997).
16. N. Van den Bogaert and F. Dupret, “Dynamic global simulation of the Czochralski process Ⅱ. Analysis of the growth of a germanium crystal,” Journal of Crystal Growth, Vol 171, pp. 77-93, (1997).
17. A. Lipchin and R. A. Brown, “Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon,” Journal of Crystal Growth, Vol 216, pp. 192-203, (2000).
18. K. Takano, Y. Shiraishi, T. Iida, N. Takase, J. Matsubara, N. Machida, M. Kuramoto and H. Yamagishi, “Numerical simulation for silicon crystal growth of up to 400mm diameter in Czochralski furnaces,” Mater. Sci. and Eng., Vol B73, pp. 30-35, (2000).
19. K. Takano, Y. Shiraishi, T. Iida, N. Takase, J. Matsubara, N. Machida, M. Kuramoto and H. Yamagishi, “Global simulation of the CZ silicon crystal growth up to 400mm in diameter,” Journal of Crystal Growth, Vol 229, pp. 26-30, (2001).
20. M. Li, Y. Li, N. Imaishi and T. Tsukada, “Global simulation of a silicon Czochralski furnace,” Journal of Crystal Growth, Vol 234, pp. 32-46, (2002).
21. T. Tsukada, N. Imaishi and M, Hozawa, “Theoretical Study of the Flow and Temperature Fields in CZ Single Crystal Growth,” Journal of Chemical Engineering, Vol 21, pp. 184-191, (1988).
22. T. Tsukada, M. Hozawa and N. Imaishi, “Global Analysis of Transfer in CZ Crystal Growth of Oxide,” Journal of Chemical Engineering, Vol 27, pp. 25-31, (1994).
23. Kobayashi N., “Hydrodynamics in Czochralski Growth-Computer Analysis and Experiments,” Journal of Crystal Growth, Vol 52, pp. 425-434, (1981).
24. Hurle D. T. J., “Analytical Representation of the Shape of the Meniscus in Czochralski Growth,” Journal of Crystal Growth, Vol 63, pp. 13-17, (1983).
25. Wu X. B., Geng X. and Guo Z. Y., “Fundamental Study of Crystal-Melt Interface Shape Change in Czochralski Crystal Growth,” Journal of Crystal Growth, Vol 169, pp. 786-794 (1996).
26. Geng X., Wu X. B. and Guo Z. Y., “Numerical Simulations of Combined Flow in Czochralski Crystal Growth,” Journal of Crystal Growth, Vol 179, pp. 309-319, (1997).
27. You Rong Li, Deng Fang Ruan, Nobuyuki Imaishi, Shuang Ying Wu, Lan Peng and Dan Ling Zeng, “Global simulation of a silicon Czochralski furnace in an axial magnetic field,” International Journal of Heat and Mass Transfer, Vol 46, pp. 2887–2898, (2003).
28. Akira Hayashi, Masaki Kobayashi, Chengjun Jing, Takao Tsukada and Mitsunori Hozawa, “Numerical simulation of the Czochralski growth process of oxide crystals with a relatively thin optical thickness,” International Journal of Heat and Mass Transfer, Vol 47, pp. 5501–5509, (2004).
29. Jyotirmay Banerjee and Krishnamurthy Muralidhar, “Role of internal radiation during Czochralski growth of YAG and Nd:YAG crystals,” International Journal of Thermal Sciences, Vol 45, pp. 151–167, (2006).
30. M. H. Tavakoli and H. Wilke, “Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1:non-rotating seed,” Cryst. Res. Techol., Vol 42, No. 6, pp. 544-557, (2007).
31. 陳志勇,“柴式法生長鈮酸鋰塊晶之研究分析”,國立中央大學機械工程研究所,碩士論文, (2004)。 |