博碩士論文 943403017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:52.14.0.24
姓名 崔海平(Hai-Ping TSUI)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電化學結合電泳精密拋光不銹鋼之研究
(A study on stainless steel machining by using Electro-chemical machining with precise electrophoretic deposition polishing.)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 純水中的電解現象分析與大電流放電加工特性研究★ 結合電化學與電泳沉積之微孔複合加工研究
★ 放電加工表面改質與精修效果之研究★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究
★ 磁場輔助微電化學銑削加工特性之研究★ 磁場輔助微電化學鑽孔加工特性之研究
★ 微結構電化學加工底部R角之改善策略分析與實做研究★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響
★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響
★ 添加石墨粉末之快速穿孔放電加工特性研究★ 派熱司玻璃材料之電化學線切割放電加工特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 機械加工後之表面粗糙度改善,常需借助拋光製程來完成,但具微細尺寸磨粒之拋光磨輪由於製造上之困難性,磨粒粒徑1~2 μm以下之拋光磨輪較難製造。當具較大尺寸磨粒之拋光磨輪被應用於拋光製程時,所產生之拋光痕較寬,致使吾人無法獲得鏡面加工之效果,另微小孔洞經機械加工後,微小孔洞內壁之鏡面拋光,因孔徑微小,目前尚未有低成本及簡易之拋光方法。因此,如何鏡面拋光機械加工後表面及提升加工品質,是本論文所要探討的主題。
本研究針對不銹鋼材料表面粗糙度改善及提升加工品質,提出了三種改善方法,分別為電泳沉積鏡面拋光、精微螺旋電極電化學鑽孔加工及電化學結合電泳微孔複合加工。經由實驗結果分析顯示,電泳沉積法進行表面拋光,使用SiC粒徑顆粒大小為0.9~1.5 μm,可將Ra 0.5 μm的車削面及Ra 1.67 μm的放電面分別改善至Ra 0.03 μm及Ra 0.05 μm的鏡面;另一種方法為採用精微螺旋電極進行電化學鑽孔加工,電化學加工反應生成物能有效排出至加工區域外,可將圓柱電極加工後之入口孔徑425 μm與出口孔徑362 μm分別降為335 μm及299 μm,有效改善電化學鑽孔加工後的微孔形狀精度;第三種方法為電化學結合電泳微孔複合加工,係於精微螺旋電極表面電泳沉積SiC磨粒而製成微複合工具,並使用該微複合工具同時施行微電化學鑽孔加工及微孔洞研磨之複合加工,可將精微螺旋電極電化學鑽孔加工之Ra 0.4 µm降至Ra 0.041 µm,對改善表面粗糙度效果相當明顯。
摘要(英) Surface roughness of the machined parts can be improved by polishing process. Nevertheless, manufacturing polishing wheels with micro abrasive grains, especially those smaller than 1~2 μm, is extremely difficult. When polishing wheels with larger abrasive grains are used in polishing, the polishing marks on the surface of the specimen are wider. The mirror-like surface can not easily obtained. It is more difficult to polish the machined micro holes. In view of such drawbacks, this study aims to enhance the surface quality and precision of machined parts.
In this study, three approaches improve the surface roughness and machining precision of stainless steel plate are proposed. Three approaches are the mirror surface polishing by using the electrophoretic deposition method, Electro-chemical micro drilling (ECMD) by using helical tool, ECMD and Electrophoretic Deposition (EPD) polishing complex micro-hole machining. For the first approach, the experimental results indicate not only that SiC particles of size 0.9~1.5 µm were used in EPD polishing, but also that the initial roughness of the turning and the EDM machined surface could be improved from 0.5 µm Ra and 1.67 µm Ra to 0.03 µm Ra and 0.05μm Ra respectively. The second approach using a micro helical tool as a novel solution in ECMD process to improve the machining accuracy. The reaction products can be squeezed out of the machining zone. The inlet and outlet diameters of the micro holes could be improved from 425 μm and 362 μm using micro cylindrical tool to 355 μm and 299 μm respectively. Finally, ECMD and EPD polishing complex micro-hole machining experiment was performed. The micro helical tool can be deposited with SiC particles in Phenolic Formaldehyde Resin solution as a hybrid micro-tool by electrophoretic deposition phenomenon. The hybrid micro-tool is used in ECMD and EPD polishing complex micro-hole machining.experiments. When the helical tool is used, the inner surface roughness of micro hole is 0.4 µm Ra. When the hybrid micro-tool is used, the inner surface roughness of micro hole declines markedly to 0.041 µm Ra. The inner surface roughness of micro hole can be significantly improved.
關鍵字(中) ★ 拋光磨輪
★ 鏡面拋光
★ 電泳沉積
★ 電化學鑽孔
★ 微複合工具
★ 不銹鋼
關鍵字(英) ★ stainless steel
★ electrophoretic deposition
★ hybrid micro-tool
★ mirror surface polishing
★ polishing wheel
★ electrochemical drilling
論文目次 目 錄
中文摘要 I
英文摘要 II
謝誌 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 文獻回顧 6
1-3-1應用電泳沈積法於表面拋光技術 6
1-3-2微電化學加工技術 7
1-4 研究方法 15
1-5 本論文之構成 17
第二章 電泳沉積鏡面拋光之研究 18
2-1 前言 18
2-2電泳沉積加工之原理 19
2-2-1 電雙層理論 19
2-2-2 電動力學現象 20
2-2-3 粉體粒子表面電荷來源 23
2-2-4 電泳沈積法之原理 24
2-2-5 電泳沈積之方式與沈積速率 25
2-3 實驗設定 27
2-3-1 實驗設備 27
2-3-2 實驗材料 30
2-3-3 實驗流程與方法 35
2-4 結果與討論 42
2-4-1電泳沉積法應用於車削面拋光之參數影響探討 42
2-4-1-1拋光時間對表面粗糙度的影響 42
2-4-1-2軸向荷重對表面粗糙度的影響 43
2-4-1-3磨輪轉速對表面粗糙度的影響 45
2-4-1-4 拋光進給速率對表面粗糙度的影響 46
2-4-1-5工作電壓對表面粗糙度的影響 48
2-4-1-6車削面試片拋光後之表面形貌觀察 49
2-4-2 電泳沉積法應用於放電面拋光之參數影響探討 51
2-4-2-1拋光時間對表面粗糙度的影響 51
2-4-2-2軸向荷重對表面粗糙度的影響 53
2-4-2-3磨輪轉速對表面粗糙度的影響 54
2-4-2-4拋光進給速率對表面粗糙度的影響 55
2-4-2-5工作電壓對表面粗糙度的影響 57
2-4-2-6放電面試片拋光後之表面形貌觀察 58
2-4-2-7電泳沉積機制之有無對表面拋光影響比較 60
2-5 結論 64
第三章 微電化學鑽孔加工特性之研究 65
3-1 前言 65
3-2 基本原理 66
3-2-1電化學加工基本原理 66
3-2-1-1法拉第定律 66
3-2-1-2 歐姆定律 67
3-3 實驗設定 68
3-3-1 實驗設備 68
3-3-2 實驗材料 70
3-3-3 實驗流程與方法 72
3-4 結果與討論 75
3-4-1 螺旋電極與圓柱電極之微電化學鑽孔加工結果之差異 75
3-4-2 精微螺旋電極實行於電化學鑽孔加工之參數影響探討 75
3-4-2-1工作電壓對內孔形狀精度的影響 76
3-4-2-2電極轉速對內孔形狀精度的影響 78
3-4-2-3電解液濃度對內孔形狀精度的影響 80
3-4-2-4脈衝時間對內孔形狀精度的影響 81
3-4-2-5螺旋電極正轉及反轉對內孔形狀精度的影響 86
3-5 結論 87
第四章 電化學結合電泳微孔複合加工之研究 88
4-1 前言 88
4-2 實驗設定 89
4-2-1 實驗設備 89
4-2-2 實驗材料 91
4-2-3 實驗流程與方法 93
4-3 結果與討論 98
4-3-1電泳沉積微複合工具之參數影響探討 98
4-3-1-1披覆電壓對沉積後直徑的影響 98
4-3-1-2披覆時間對沉積後直徑的影響 100
4-3-1-3電極轉速對沉積後直徑的影響 101
4-3-1-4 SiC濃度對沉積後直徑的影響 102
4-3-2 微孔複合加工結果探討 104
4-4 結論 108
第五章 總結論 109
參考文獻 112
參考文獻 1. J. F. Wilson, Practice and Theory of Electrochemical Machining, Wiley-interscience, 1 (1971) 4-7.
2. W. Konig, F. Klocke, Fertigungsverfahren-3: Abtragen und Generiere, Springer Berlin, 3 (1997) 200-207.
3. S. J. Ebeid, M. S. Hewidy, T. A. El-Taweel, A. H. Youssef, Towards higher accuracy for ECM hybridized with low-frequency vibrations using the response surface methodology, Journal of Materials Processing Technology, 149 (2004 ) 432-438.
4. B. Bhattacharyya, M. Malapati, J. Munda, Experimental study on electrochemical micromachining, Journal of Materials Processing Technology, 169 (2005) 485-492.
5. 朱樹敏,電化學加工技術,化學工業出版社 (2006) 15-17。
6. 唐文聰,精密機械加工原理,全華圖書 (1989) 3-37。
7. 徐景福,精密金屬模具的磨光加工,建宏出版社 (2000) 15-19。
8. 蔡光起、宋貴亮,磨削技術理論與應用,東北大學出版社 (2002) 234-237。
9. 間宮富士雄、山口裕、渡邊與七,化學研磨と電解研磨,楨書店(2004) 113-114。
10. 朱樹敏,電化學加工(ECM)及相關特種加工工藝技術,電化學加工及相關特種加工工藝技術研討會,台大慶齡工業研究中心(1997) 1-10。
11. K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu1, R. Resnick, A. DeSilva, Micro and Nano Machining by Electro- Physical and Chemical Processes, Annals of the CIRP, 55 (2006) 643-666.
12. R. Schuster, V. Kirchner, P. Allongue, G. Ertl, Electrochemical micromachining, Science 289 (2000) 98-101.
13. J. Kozak, K. P.Rajurkar, Y. Makkar, Selected problems of micro-electrochemical machining, Journal of Materials Processing Technology, 149 (2004) 426-431.
14. S. H. Ahn, S. H. Ryu, D. K. Choi, C. N. Chu, Electrochemical microdrilling using ultra short pulses, Precision Engineering 28 (2) (2004) 129-134.
15. T. Kurita, K. Chikamori, S. Kubota, M. Hattori, A study of three-dimensional shape machining with an ECM system, International Journal of Machine Tools & Manufacture, 46 (2006) 1311-1318.
16. K. Chikamori, Possibilities of electrochemical micromachining, International Journal of the Japan Society for Precision Engineering, 32 (1) (1998) 37-38
17. M. Hattori, Electrochemical machining under orbital motion conditions, Journal of Materials Processing Technology, 109 (2001) 339-346.
18. S. Yanagida, A. Nakajima, Y. Kameshima, N. Yoshida, T. Watanabe, K. Okada, Preparation of a crack-free rough titania coating on stainless steel mesh by electrophoretic deposition, Materials Research Bulletin, 40 (2005) 1335-1344.
19. S. Y. Ng, A. R. Boccaccini, Lead zirconate titanate films on metallic substrates by electrophoretic deposition, Materials Science and Engineering, 116 (2005) 208-214.
20. A. Pfrengle, H. von Both, R. Knitter, J. Haußelt, Electrophoretic deposition and sintering of zirconia layers on microstructured steel substrates, Journal of the European Ceramic Society, 26 (2005) 2633-2638.
21. C. Kaya, F. Kaya, B. Su, B. Thomas, A. R. Boccaccini, Structural and functional thick ceramic coatings by electrophoretic deposition, Surface & Coatings Technology, 191 (2005) 303-310.
22. K. Takahata, S. Aoki, T. Sato, Fine surface finishing method for 3-dimensional micro structures, Proceeding IEEE MEMS, (1996) 73-78.
23. Y. Tani, T. Saeki , Y. Samitsu , K. Kobayashi , Y. Sato , Infeed grinding of silicon wafers applying electrophoretic deposition of ultrafine abrasives, Annals of the CIRP, 47 (1998) 245-248.
24. Z. Haga, T. Semba, Electrophoretic polishing of zirconia ceramics using a porous anodic film as a binder of ultrafine silica abrasives, JSME International Journal Series C, l.41 (1998) 922-928.
25. Y. Yamamoto, H. Maeda, H. Shibutani, H. Suzuki and O. Horiuchi, A study on constant-pressure grinding with EPD pellets, Key Engineering Materials, 257-258 (2004) 135-140.
26. T. Oshita, Y. Sawaki, M. Kishimoto, Grinding performance of pellet prepared using nanosize ceria particles, Journal of Alloys and Compounds, 408-412 (2006) 1118-1122.
27. J. Hopenfeld, R.R. Cole, Prediction of the one-dimensional equilibrium cutting gap in electrochemical machining, Transaction of ASME B8 (1969) 755-765.
28. J. Bannard, Electrochemical machining, J. Appl. Electrochem, 7 (1977) 1-29.
29. C. Ing, E. S. Bignon, C. Bedrin, Application of eddy currents to in-process measurement of the gap in ECM, Annals of the CIRP 31 (1982) 115-119.
30. M. A. Bejar, F. Gutierrez, On the determination of current efficiency in electrochemical machining with a variable gap, Journal of Materials Processing Technology, 37 (1993) 691-699.
31. J. Kozak, K. P. Rajurkar, R. Balkrishna, Study of electrochemical jet machining process, Transactions of the ASME 118 (1996) 490-499.
32. K. Yoneda, M. Kunieda, Numerical analysis of cross sectional shape of micro-indents formed by the electrochemical jet machining, JSEME, 29 (1996) 1-8.
33. J. A. De Silva, K. McGeough, Process monitoring of electrochemical micromachining, International Journal of Materials Processing Technology, 76 (1998) 165-169.
34. J. Kozak, Mathematical models for computer simulation of electrochemical machining processes, Journal of Materials Processing Technology, 76 (1998) 170-175.
35. K. Chikamori, Possibilities of electrochemical micro machining, International Journal of Japan Society of Precision Engineering, 32 (1998) 37-42.
36. B. Bhattacharyya, S. K. Sorkhel, M. Malapati, Investigation for controlled ellectrochemical machining through response surface methodology-based approach, Journal of Materials Processing Technology, 86 (1999) 200-207.
37. J. Kozak, L. Dabrowski, K. Lubkowski, M. Rozenek, R. SøawinÂski, CAE-ECM system for electrochemical technology of parts and tools, Journal of Materials Processing Technology, 107 (2000) 293-299.
38. J. Kozak, M. Chuchro, A. Ruszaj, K. Karbowski, The computer aided simulation of electrochemical process with universal spherical electrodes when machining sculptured surfaces, Journal of Materials Processing Technology, 107 (2000) 283-287.
39. J. J. Sun, E .J. Taylor, R. Srinivasan, MREF-ECM process for hard passive materials surface finishing, Journal of Materials Processing Technology, 108 (2001) 356-368.
40. Y. M. Lim, S. H. Kim, An electrochemical fabrication method for extremely thin cylindrical micropin, International Journal of Machine Tools & Manufacture, 41 (2001) 2287-2296.
41. J. Kozak, Computer simulation system for electrochemical shaping, Journal of Materials Processing Technology, 109 (2001) 354-359.
42. B. Bhattacharyya, S. Mitra, A. K. Boro, Electrochemical machining: new possibilities for micromachining, Robotics and Computer Integrated Manufacturing, 18 (2002) 283-289.
43. B. H. Yan , A. C. Wang , C. Y. Huang , F. Y. Huang, Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining, International Journal of Machine Tools & Manufacture, 42 (2002), 1105-1112.
44. D. Zhu, X. Y. Xu, Improvement of electrochemical machining accuracy by using dual pole tool, International Journal of Materials Processing Technology, 129 (2002) 15-18.
45. D. Clifton, A. R. Mount, G. M. Alder, D. Jardine, Ultrasonic measurement of the inter electrode gap in electrochemical machining, International Journal of Machine Tools & Manufacture, 42 (2002) 1259-1267.
46. B. Bhattacharyya, J. Munda, Experimental investigation into electrochemical micromachining (EMM) process, Journal of Materials Processing Technology, 140 (2003) 287-291.
47. S. J. Altena, EDM and ECM for mass production Philips DAP, Journal of Materials Processing Technology, 149 (2003) 18-21
48. Y. Li, Y. F. Zheng, G. Yang, L. Q. Peng Liangqiang, Localized electrochemical micromachining with gap control, Sensors and Actuators, 108 (2003) 144-148.
49. B. Bhattacharyya, J. Munda, Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain, International Journal of Machine Tools & Manufacture, 43 (2003) 1301-1310.
50. D. Landolt, P. F. Chauvy, O. Zinger, Electrochemical micromachining, polishing and surface structuring of metals fundamental aspects and new developments, Electrochimica Acta, 48 (2003) 3185-3201.
51. M. Läuter, H. J. Trautmann, M. Zybura-Skrabalak, H. P. Schulze, G. Wollenberg, Structure of process energy sources for time-parallel combined processes, Journal of Materials Processing Technology, 149 (2004) 519-523.
52. J. A. Westley, J. Atkinson, A. Duffield, Generic aspects of tool design for electrochemical machining, International Journal of Materials Processing Technology, 149 (2004) 384-392.
53. J. Y. Wang, A. De Silva, Yu Yanqing, Han Guangjun, New Approach to enhance the accuracy of ECM High-precision Short Pulses ECM (HSPECM), Journal of Materials Processing Technology, 149 (2004) 382-383.
54. V. M. Volgin, A. D. Davydov, M. Hattori, Modeling of multistage electrochemical shaping, Journal of Materials Processing Technology, 149 (2004) 466-471.
55. Z. J. Fan, T. C. Wang, L. Zhong, The mechanism of improving machining accuracy of ECM by magnetic field , Journal of Materials Processing Technology, 149 (2004) 409-413.
56. B. Bhattacharyya, J. Munda, M. MalapatiAdvancement in electrochemical micro-machining, International Journal of Machine Tools & Manufacture, 44 (2004) 1577-1589.
57. A. N. Zaytsev, V. P. Zhitnikov, T. V. Kosarev, Formation mechanism and elimination of the workpiece surface macro-defects, aligned along the electrolyte stream at electrochemical machinin, Journal of Materials Processing Technology, 149 (2004) 439-444.
58. A. Zaytsev, I. Agafonov, N. Gimaev, R. Moukhoutdinov, A. Belogorsky, Precise pulse electrochemical machining by bipolar current aspects of effective technological application, Journal of Materials Processing Technology, 149 (2004) 419-425.
59. T. Kurita, M. Hattori, Development of new-concept desk top size machine tool, International Journal of Machine Tools & Manufacture, 45 (2005) 959-965.
60. M. M. Lohrengel, C. Rosenkranz, Microelectrochemical surface and product investigations during electrochemical machining (ECM) in Na2NO3, Corrosion Science, 47 (2005) 785-794.
61. C. Rosenkranz, M. M. Lohrengel, J. W. Schultze, The surface structure during pulsed ECM of iron in NaNO3, Electrochimica Acta, 50 (2005) 2009-2016.
62. B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi, C. N. Chu, Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid, 54 (2005) 191-194.
63. B. H. Kim, S. H. Ryu, D. K. Choi and C. N. Chu, Micro electrochemical milling, Journal of Micromechanics and Microengineering, 15 (2005) 124-129.
64. J. W. Xu, N. Z. Yun, Y. X. Tang, K. P. Rajurkar, Mathematical models for computer simulation of electrochemical machining processes, Journal of Materials Processing Technology, 159 (2005) 272-277.
65. M. S. Hewidy, Controlling of metal removal thickness in ECM process, Journal of Materials Processing Technology, 160 (2005) 348-353.
66. T. Kurita, M. Hattori, A study of EDM and ECM/ECM-lapping complex machining technology, International Journal of Machine Tools & Manufacture, 46 (2006) 1804-1810.
67. C. Sun, D. Zhu, Z. Li, L.Wang, Application of FEM to tool design for electrochemical machining freeform surface, Finite Elements in Analysis and Design, 41 (2006) 168-172.
68. J. C. Silva Neto, E. M. Silva, M. B. Silva, Intervening variables in electrochemical machining, Journal of Materials Processing Technology, 179 (2006) 92-96.
69. W. Natsu, T. Ikeda, M. Kunieda, Generating complicated surface with electrolyte jet machining, Precision Engineering, 31 (2007), 33-39.
70. M. Rahman, H. S. Lim, K. S. Neo, A. Senthil Kumar, Y.S. Wong, X. P. Li, Tool-based nanofinishing and micromachining, Journal of Materials Processing Technology, 185 (2007) 2-16.
71. M. S. Park, C. N. Chu, Micro-electrochemical machining using multiple tool electrodes, Journal of Micromechanics and Microengineering, 17 (2007) 1451-1457.
72. O. V. D. Biest, L. J. Vandeperre, Electrophoretic deposition of materials, Annual Review of Materials Science, 29 (1999) 327-352.
73. K. Simovic, V. B. Miskovic-Stankovic, D. Kicevic, P. Jovanic, Electrophoretic deposition of thin alumina films from water suspension, Colloids and Surfaces (A), 209 (2002) 47-55.
74. 董光雄,放電加工,復文書局 (1994) 26-29。
75. 張有義、郭蘭生,膠體及界面化學入門,高立圖書有限公司出版 (1997) 191-230。
76. 陳正德,碳化矽的電泳沈積現象探討,中央大學機械工程研究所碩士論文2002。
77. 陳宗淇、戴閩光,膠體化學,高等教育出版社 (1984) 234-237。
指導教授 顏炳華(Biing Hwa Yan) 審核日期 2008-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明