博碩士論文 953203010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.15.1.196
姓名 張育豪(Yu-Hao Jhang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎂鎳合金儲氫罐在吸放氫作用下之應變分析
(Analysis of Wall Strain on the Reaction Vessel of Mg2Ni Alloy During Cyclic Hydriding/Dehydriding Processes)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討在循環吸放氫作用下,鎂鎳合金儲氫罐壁上的應變在不同位置和方向的變化。實驗用鎂鎳合金儲氫罐是由AISI 316不銹鋼所製成,實驗條件的吸氫壓力為3 MPa,放氫壓力則為真空,吸放氫皆在300oC下完成,並利用SEM觀察Mg2Ni合金粉末在活化前和實驗結束後之形態與大小。
結果顯示,在實驗的後半段,罐壁切線方向應變不論在1/10或3/10瓶高處,由於Mg2Ni粉末結塊的關係,應變累積現象都有消失的時候。然而在1/10瓶高消失的時間比在3/10瓶高消失的時間早5個循環,是因為罐體底部結塊的粉體高度越來越高所導致。就吸放氫循環中的應變增量而言,切線方向應變增量在後期的循環數中驟降到零,但是軸向應變增量從頭至尾則是緩慢遞減。這是因為在罐體底部已結塊的粉體吸氫活動越來越少所致。由SEM的觀察中可以得知,粉碎化不僅可以鈍化Mg2Ni粉末鋒利的外型,還可以讓顆粒大小由活化前的74 ?m縮小到實驗結束後的1 ?m。
在增加足夠的氫氣量之後,Mg2Ni的吸氫量的確有明顯的上升,且不同高低位置的切線方向應變幾乎是隨循環數增加而呈現線性遞增的現象。Mg2Ni粉末的結塊可以有效降低切線方向的應變增量,換言之,粉末的結塊化可以降低由Mg2Ni粉末吸氫之後所造成的體積膨脹量。
摘要(英) The purpose of this study is to investigate the wall strain variation on the reaction vessel of Mg2Ni alloy at various combinations of location and direction during cyclic hydriding/dehydriding processes. The reaction vessel was made of AISI 316 stainless steel. The pressure conditions for the absorption and desorption steps were set at 3 MPa and vacuum, respectively, at 300 oC. The particle morphology of the Mg2Ni alloy before activation and after a 45-cycle test was analyzed with scanning electron microscopy (SEM).
Results showed that the strain accumulation phenomenon in the hoop strain disappeared at the later hydriding/dehydriding cycles due to agglomeration of the Mg2Ni alloy powders no matter at the location of 1/10 or 3/10 height of the vessel. The cycle number at the disappearance of the strain accumulation phenomenon in the hoop strain at the location of 1/10 height of the vessel was smaller than that of the 3/10 height by 5 cycles. This was ascribed to a continuous increase in the height of an agglomerated disk formed at the bottom of the reaction vessel. With regard to the strain increment in a hydriding/dehydriding cycle, the hoop strain increment was drastically reduced toward zero at the later testing cycles while the axial strain increment was gradually reduced in a smaller rate throughout the test. This could be attributed to less and less absorption activities taking place in the continuously growing agglomerated Mg2Ni alloy disk formed at the bottom of the reaction vessel. The SEM observations showed that a pulverization mechanism caused not only the corners of the Mg2Ni alloy powders to change from sharp to smooth and round but also the particle size of the Mg2Ni powders to decrease from 74 to 1 ?m after activation and a 45-cycle test.
After supplying sufficient hydrogen gas, the hoop strain on vessel wall was increased linearly with progressive cycles throughout the testing period. When the Mg2Ni alloy powders were agglomerated, the hoop strain increment was reduced. It indicates that the volume expansion induced by the Mg2Ni hydride powders was reduced by agglomeration.
關鍵字(中) ★ 鎂鎳
★ 分析
★ 應變
★ 儲氫罐
關鍵字(英) ★ Mg2Ni
★ hydride storage vessel
★ analysis
★ strain
論文目次 LIST OF TABLES VI
LIST OF FIGURES VII
1. INTRODUCTION 1
1.1 Hydrogen Energy 1
1.2 Advantages of Hydride Storage 1
1.3 Storage Vessel for Metal Hydride 5
1.4 Purpose and Scope 6
2. EXPERIMENTAL PROCEDURES 8
2.1 Experimental Setup 8
2.2 Material and Experimental Procedure 9
3. RESULTS AND DISCUSSION 11
3.1 Hydrogen Storage Capacity 11
3.2 Wall Strains at Various Locations 12
3.3 Variation of Strain Increment with Number of Cycles 16
3.4 Variation of Particle Size 17
3.5 Effect of Amount of Hydrogen Gas Supplied 19
4. CONCLUSIONS 22
REFERENCES 24
TABLES 26
FIGUURES 28
參考文獻 1.Z. Dehouche, R. Djaozandry, J. Goyette, and T. K. Bose, ”Evaluation Techniques of Cycling Effect on Thermodynamic and Crystal Structure Properties of Mg2Ni Alloy,” Journal of Alloys and Compounds, Vol. 288, 1999, pp. 269-276.
2.X. Zhang, D. Cao, and J. Chen, ”Hydrogen Absorption Storage on Single-walled Carbon Nanotube Arrays by a Combination of Classical Potential and Density Functional Theory,” Journal of Physical Chemistry B, Vol. 107, 2003, pp. 4942-4950.
3. U. Eberle, G. Arnold, and R. von Helmolt, “Hydrogen Storage in Metal-Hydrogen Systems and Their Derivatives,” Journal of Power Sources, Vol. 154, 2006, pp. 456-460.
4. G. Sandrock, “A Panoramic Overview of Hydrogen Storage Alloys from a Gas Reaction Point of View,” Journal of Alloys and Compounds, Vol. 293, 1999, pp. 877-888.
5. E. Akiba and H. Iba, “Hydrogen Absorption by Laves Phase Related BCC Solid Solution,” Intermetallics, Vol. 6, 1998, pp. 461-470.
6. T. Malinova and Z. X. Guo, “Artificial Neural Network Molding of Hydrogen Storage Properties of Mg-based Alloys,” Material Science and Engineering, Vol. A 365, 2004, pp. 219-227.
7. Metals Handbook, 10th Ed., Vol. 3, ASM International, Materials Park, OH, 1990, p. 2.281.
8. S. T. McKillip, C. E. Bannister, and E. A. Clark, “Stress Analysis of Hydride Bed Vessels Used for Tritium Storage,” Fusion Technology, Vol. 21, 1992, pp. 1011-1016.
9. K. Nasako, Y. Ito, N. Hiro, and M. Osumi, “Stress on a Reaction Vessel by the Swelling of a Hydrogen Absorbing Alloy,” Journal of Alloys and Compounds, Vol. 264, 1998, pp. 271-276.
10. B. Y. Ao, S. X. Chen, and G. Q. Jiang, “A Study on Wall Stresses Induced by LaNi5 Alloy Hydrogen Absorption-Desorption Cycles,” Journal of Alloys and Compounds, Vol. 390, 2005, pp. 122-126.
11. F. Qin, L. H. Guo, J. P. Chen, and Z. J. Chen, “Pulverization, Expansion of La0.6Y0.4Ni4.8Mn0.2 During Hydrogen Absorption-Desorption Cycles and Their Influences in Thin-wall Reactors,” International Journal of Hydrogen Energy, Vol. 33, 2008, pp. 709-717.
12. S. Enache, W. Lohstroh, and R. Griessen, “Temperature Dependence of Magnetoresistance and Hall Effect in Mg2NiHx Films,” Physical Review, Vol. B 69, 2004, pp. 115326-1-115326-2.
13. B. Sakintuna, F. Lamari-Darkrimb, and M. Hirscher, “Metal Hydride Materials for Solid Hydrogen Storage: A Review,” International Journal of Hydrogen Energy, Vol. 32, 2007, pp. 1121-1140.
14. D. Sun, H. Enoki, F. Gingl, and E. Akiba, “New Approach for Synthesizing Mg-based Alloys,” Journal of Alloys and Compounds, Vol. 285, 1999, pp. 279-283.
15. C. W. Hsu, S. L. Lee, R. R. Jeng, and J. C. Lin, “Mass Production of Mg2Ni Alloy Bulk by Isothermal Evaporation Casting Process,” International Journal of Hydrogen Energy, Vol. 32, 2007, pp. 4907-4911.
16. R. A. Oreani, “Physical and Metallurgical Aspects of Hydrogen in Metals,” Fusion Technology, Vol. 26, 1994, pp. 235-266.
17. K. Nasako, Y. Ito, and N. Hiro, “Relaxation of Internal Stress Generated in Hydrogen Absorbing Alloy Vessels,” International Journal of Hydrogen Energy, Vol. 23, 1998, pp. 921-929.
18. D. L. Narayanan and A. D. Lueking, “Mechanically Milled Coal and Magnesium Composites for Hydrogen Storage,” Carbon, Vol. 45, 2007, pp. 805-820.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明