參考文獻 |
1. K. J. Daun, S. B. Beale, F. Liu and G. J. Smallwood, “Radiation Heat Transfer in Planar SOFC Electrolytes,” Journal of Power Sources, Vol. 157, 2006, pp. 302-310.
2. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A362, 2003, pp. 228-239.
3. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Recent Developments in Solid Oxide Fuel Cell Materials,” Fuel Cells, Vol. 1, 2001, pp. 117-131.
4. R. M. Ormerod, “Solid Oxide Fuel Cells,” Chemical Society Reviews, Vol. 32, 2003, pp. 17-28.
5. T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, 2002, pp. 513-519.
6. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, 2005, pp. 46-57.
7. S. P. Simner and J. W. Stevenson, “Compressive Mica Seals for SOFC Applications,” Journal of Power Sources, Vol. 102, 2001, pp. 310-316.
8. K. P. Recknagle, R. E. Williford, L. A. Chick, D. R. Rector, and M. A. Khaleel, “Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks,” Journal of Power Sources, Vol. 113, 2003, pp. 109-114.
9. C. S. Montross, H. Yokokawa, and M. Dokiya, “Thermal Stresses in Planar Solid Oxide Fuel Cells due to Thermal Expansion Differences,” British Ceramic Transactions, Vol. 101, 2002, pp. 85-93.
10. K. S. Weil and B. J. Koeppel, “Comparative Finite Element Analysis of the Stress-Strain States in Three Different Bonded Solid Oxide Fuel Cell Seal Designs,” Journal of Power Sources, Vol. 180, 2008, pp. 343-353.
11. H. Yakabe, Y. Baba, T. Sakurai, and Y. Yoshitaka, “Evaluation of the Residual Stress for Anode-Supported SOFCs,” Journal of Power Sources, Vol. 135, 2004, pp. 9-16.
12. W. Fischer, J. Malzbender, G. Blass, and R.W. Steinbrech, “Residual Stresses in Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 150, 2005, pp. 73-77.
13. H. Yakabe, Y. Baba, T. Sakurai, M. Satoh, I. Hirosawa, and Y. Yoda, “Evaluation of Residual Stresses in a SOFC Stack,” Journal of Power Sources, Vol. 131, 2003, pp. 278-284.
14. J. Laurencin, G. Delette, F. Lefebvre-Joud, and M. Dupeux, “A Numerical Tool to Estimate SOFC Mechanical Degradation: Case of the Planar Cell Configuration,” Journal of the European Ceramic Society, Vol. 28, 2008, pp. 1857-1869.
15. A. Selimovic, M. Kemm, T. Torisson, and M. Assadi, “Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 145, 2005, pp. 463-469.
16. H. Yakabe, T. Ogiwara, M. Hishinuma, and I. Yasuda, “3-D Model Calculation for Planar SOFC,” Journal of Power Sources, Vol. 102, 2001, pp. 144-154.
17. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, 2007, pp. 238-251.
18. A.-S. Chen, “Thermal Stress Analysis of a Planar SOFC Stack with Mica Sealants,” M.S. Thesis, National Central University, 2007.
19. A. Selcuk, G. Merere, and A. Atkinson, “The Influence of Electrodes on the Strength of Planar Zirconia Solid Oxide Fuel Cells,” Journal of Materials Science, Vol. 36, 2001, pp. 1173-1182.
20. M. Radovic and E. Lara-Curzio, “Mechanical Properties of Tape Cast Nickel-Based Anode Materials for Solid Oxide Fuel Cells before and after Reduction in Hydrogen,” Acta Materialia, Vol. 52, 2004, pp. 5747-5756.
21. Y. Wang, M. E. Walter, K. Sabolsky, and M. M. Seabaugh, “Effects of Powder Sizes and Reduction Parameters on the Strength of Ni-YSZ Anodes,” Solid State Ionics, Vol. 177, 2006, pp. 1517-1527.
22. J. Malzbender and R. W. Steinbrech, “Fracture Test of Thin Sheet Electrolytes for Solid Oxide Fuel Cells,” Journal of the European Ceramic Society, Vol. 27, 2007, pp. 2597-2603.
23. A. Atkinson and A. Selcuk, “Mechanical Behaviour of Ceramic Oxygen Ion-Conducting Membranes,” Solid State Ionics, Vol. 134, 2000, pp. 59-66.
24. F. L. Lowrie and R. D. Rawlings, “Room and High Temperature Failure Mechanisms in Solid Oxide Fuel Cell Electrolytes,” Journal of the European Ceramic Society, Vol. 20, 2000, pp. 751-760.
25. “Structural Elements,” Chapter 15 in ABAQUS Analysis User’s Manual V6.5, ABAQUS, Inc., Rising Sun Mills, USA, 2004.
26. S. Le, K. Sun, N. Zhang, Y. Shao, M. An, Q. Fu, and X. Zhu, “Comparison of Infiltrated Ceramic Fiber Paper and Mica Base Compressive Seals for Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 168, 2007, pp.447-452.
27. Y. P. Chyou, T. D. Chung, J. S. Chen, and R. F. Shie, “Integrated Thermal Engineering Analysis with Heat Transfer at Periphery of Planar Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 139, 2005, pp. 126-140.
28. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Fuel Cell Seals,” Journal of Material Engineering and Performance, Vol. 13, 2004, pp. 316-326.
29. J. Malzbender, R. W. Steinbrech, and L. Singheiser, “Failure Probability of Solid Oxide Fuel Cells,” pp. 293-298 in Proceedings of the 29th International Conference on Advanced Ceramics and Composites, January 23-28, Cocoa Beach, Florida, 2005.
30. B. N. Nguyen, B. J. Koeppel, S. Ahzi, M. A. Khaleel, and P. Singh, “Crack Growth in Solid Oxide Fuel Cell Materials: From Discrete to Continuum Damage Modeling,” Journal of the American Ceramic Society, Vol. 89, 2006, pp. 1358-1368.
31. N. P. Bansal and E. A. Gamble, “Crystallization Kinetics of a Solid Oxide Fuel Cell Seal Glass by Differential Thermal Analysis,” Journal of Power Sources, Vol. 147, 2005, pp. 107-155.
32. N. P. Bansal, J. B. Hurst, and S. R. Choi, “Boron Nitride Nanotubes-Reinforced Glass Composites,” Journal of the American Ceramic Society, Vol. 89, 2006, pp. 388-390.
33. S. Habelitz, G. Carl, C. Rüssel, S. Thiel, U. Gerth, J.-D. Schnapp, A. Jordanov, and H. Knake, “Mechanical Properties of Oriented Mica Glass Ceramic,” Journal of Non-Crystalline Solids, Vol. 220, 1997, pp. 291-298.
34. Y.-S. Chou and J. W. Stevenson, “Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells: Effect of Mica Thickness,” Journal of Power Sources, Vol. 124, 2003, pp. 473-478.
35. Metals Handbook, 10th Ed., Vol. 2, ASM International, Materials Park, OH, 1990, pp. 437-441.
36. W. Koster, “The Temperature Dependence of the Elasticity Modulus of Pure Metals,” Zeitschrift fur Metallkunde, Vol. 39, 1948, pp. 1-9. (in German)
37. “Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water,” ASTM C20-00, Annual Book of ASTM Standards, Vol. 15.01, American Society for Testing and Materials, Philadelphia, USA, 2005.
38. “Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature,” ASTM C1499-05, Annual Book of ASTM Standards, Vol. 15.01, American Society for Testing and Materials, Philadelphia, USA, 2005.
39. R. W. Schmitt, K. Blank, and G. Schönbrunn, “Experimentelle Spannungsanalyse zum Doppelringverfahren,” Sprechsaal, Vol. 116, 1983, pp. 397-409. (in German)
40. J. A. Salem and L. Powers, “Guidelines for the Testing of Plates,” Ceramic Engineering and Science Proceedings, Vol. 24, 2003, pp. 357-364. |