博碩士論文 953203015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:3.144.89.197
姓名 邱淑貞(Shu- Zhen Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 有機系統DMF溶液電鍍鎂鎳合金薄膜之研究
(Co-deposition of magnesium and nickel thin film on copper substrate in DMF)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文在探討自含鎂、鎳離子之氮,氮-二甲基甲醯胺(N, N-dimethylformamide DMF)有機鍍液中共鍍鎂、鎳薄膜於銅基材上的可行性。首先添加螯合劑(如檸檬酸及硼酸)至上述電解液中,期望藉由拉近Mg/Ni兩種金屬的還原電位,來共鍍鎂、鎳薄膜。經由電化學陰極動態極化法研究之結果顯示: 在鍍浴中,若陰極電位控制在-0.8VSHE以上時,觀察到氣泡的產升,推測為氫氣產生之反應;電位在-0.8VSHE至-1.3VSHE間,析鍍出具光澤性之金屬,推測為金屬鎳之鍍出;電位在-1.3VSHE以下,析鍍出黑色薄膜,推測為鎂、鎳薄膜之共鍍。
在定電位下進行鎂、鎳薄膜共鍍時,若分別改變DMF鍍液中Mg2+和Ni2+離子濃度,則薄膜鍍層之形貌及其中鎂、鎳組成比例均有變化,鍍膜中的Mg/Ni比例,隨鍍浴中Mg2+濃度增加而增大,但隨Ni2+濃度增加而減小。若鍍浴中Mg2+濃度固定為1.00 M,可由鍍膜中鎂、鎳組成之分析,來推算鍍浴中Mg2+,Ni2+離子之活性係數。在-1.6VSHE與-1.8電位下共鍍鎂、鎳薄膜程序中,其所伴隨之氫氣產生,不僅影響電流效率,亦會影響鍍膜中的Mg/Ni組成比例。
薄膜之儲氫放電容量電化學測試顯示:在含1.00M Mg2+離子和0.10M Ni2+離子DMF鍍浴中,添加0.048 M檸檬酸及0.024 M硼酸下,於-2.2VSHE電位下所得之鍍膜,其儲氫放電容量値最大 (約為150mAh/g)。
摘要(英) Co-deposition of magnesium and nickel from an organic bath of N, N-dimethylformamide containing both these ions onto copper substrate has been investigated. Chelating agent such as citrate was added in the bath to form complex with nickel so that the reduction potentials of Mg and Ni could be pulled closely and make the co-deposition possible. Potentiodynamic polarization on the cathode provided an useful information on the co-deposition. The bubbles evolved at potential higher than -0.8 V were considered as hydrogen gas; the lustered film deposited in the potential from -0.8 to -1.3V was inferred as metallic nickel and the dark film deposited at potential lower than -1.3V was a co-deposition film of Mg-Ni
When the co-deposition performed potentiostatically in the DMF, the morphology and composition of the deposit were found to depend on the concentrations of Mg2+ and Ni2+ in the bath. The compositional ratio of Mg to Ni in the deposit increases with increasing the concentration of Mg2+ but decreases with Ni2+ concentrations. For the co-deposition conducted in a DMF solution containing 1.0 M Mg2+, the activity coefficient of Mg and Ni ions could be estimated by virtue of composition analysis on the film. Hydrogen evolution not only affected the current efficiency of the process but also influenced the composition of Mg and Ni in the deposit when the co-deposition of Mg-Ni performed at the potential in between -1.6 and -1.8 V.
Hydrogen storage and its discharge capacity in the Mg-Ni binary films could be evaluated using electrochemical method. The Mg-Ni film, deposited at -2.2 V from DMF solution containing 1.0 M Mg2+ and 0.1 M Ni2+ in the presence of 0.48 M citrate and 0.024 M boron acid, revealed the highest capacity in hydrogen storage and discharge DMF solution.
analysis demonstrated that the Mg-Ni hydrogen storage thin film exhibited the highest capacity (i.e., 150mAh/cm2) in the hydrogen storage discharge.
關鍵字(中) ★ 放電容量
★ 合金電鍍
★ 鎂鎳合金
關鍵字(英) ★ Mg-Ni co-deposition
★ hydrogen storage and discharge
★ DMF
論文目次 中文摘要
英文摘要
致謝
目錄
表目錄
圖目錄
第一章 前言
1.1氫能源發展現況
1.2儲氫合金簡介
1.3儲氫元素與合金
1.3.1 儲氫元素
1.3.2 儲氫合金
1.4儲氫合金的應用
1.4.1 儲氫容器
1.4.2 氫純化
1.4.3 熱泵
1.4.4 電動車用電池
1.4.5 催化劑
1.5鎂基儲氫材料製備方法
1.5.1高溫熔煉法
1.5.2機械合金化
1.5.3燃燒合成法
1.5.4燒結法
1.5.5電鍍法
1.6本論文研究之動機與目的
1.6.1 研究動機
1.6.2 研究目的
第二章、文獻回顧
2.1 非水溶液電鍍
2.1.1 非水溶劑分類
2.1.2 非水溶劑的要求
2.1.3 非水溶液鍍鋁
2.2 鎂的基本化學特性
2.3 鎂的電鍍方法
2.3.1 有機溶液系統
2.3.2 離子溶液系統
2.4 鎳的基本化學特性
2.5鎳的電鍍方法
2.6 鎂鎳合金的電鍍原理
2.6.1 平板電鍍原理
2.6.2 合金電鍍原理
2.7合金充放電原理
2.7.1定電壓充電法
2.7.2定電流充電法
第三章、實驗方法
3.1 實驗裝置
3.1.1試片製備
3.1.2 電鍍槽裝置
3.1.3 溶液配置
3.2 實驗流程
3.2.1 電化學分析實驗
3.2.1.1動態極化實驗
3.2.1.2循環伏安法
3.2.2 合金電鍍實驗
3.2.2.1 濃度參數變化實驗
3.2.2.2 電位參數變化實驗
3.2.3 充放電性能實驗
3.3 儀器設備
3.3.1 實驗儀器
3.3.2 檢測儀器
第四章 實驗結果
4.1電化學實驗結果
4.1.1循環伏安實驗
4.1.2極化曲線實驗結果
4.2 Mg/Ni合金形貌成分
4.2.1 SEM形貌觀察
4.2.2 EDS 成分定性
4.3 Mg/Ni溶液的電流密度比較
4.4 Mg/Ni溶液的沉積比例預測
4.5 合金析鍍實驗ICP結果
4.5.1 濃度矩陣之影響
4.5.2 電位參數之影響
4.6 XRD 結構分析
4.7 Mg/Ni合金的放電容量
第五章 結果討論
5.1製備含Mg/Ni合金之可行性
5.1.1水溶液與DMF溶液之還原電位
5.1.2析鍍電位對鍍層結構成分的影響
5.2 鍍液中Mg2+/Ni2+離子濃度對合金之影響
5.3 鍍液中析鍍電位對合金之影響
5.4 含Mg2Ni成分合金之充放電
第六章 結論
第七章 未來展望
參考文獻
參考文獻 [1] B.D. Solomon and A. Banerjee,A Global Survey of Hydrogen Energy Research,Development and Policy,Energy Policy,Vol. 34,pp.781-792,2006.
[2] S.S. Penner,Steps Toward the Hydrogen Economy,Energy,Vol.
31,pp.33-43,2006.
[3] L.M.Das,On-Board Hydrogen Storage Systems for Automotive
Application,Int.J.Hydrogen Energy,Vol.21,pp.789-800,1996.
[4] R.Janot,L.Aymard,A.Rougier,et al.,Fast Hydrogen Sorption Kinetics for Ball Milled Mg2Ni Alloys,Journal of Physics and Chemistry of Solids,Vol.65,pp.529-534,2004.
[5] 陳秀娟,劉學龍,夏天東,劉天佐,趙文軍,鎂基儲氫材料研究狀,材料開發與應用,第19卷,第6期,pp.39-44.
[6] 尤光先,電鍍工程學, 徐氏基金會出版.
[7] 許傅凱,機械合金合成含鋁之Mg2Ni儲氫合金的結構與特性研
究,國立中央大學機械工程研究所碩士論文,2006.
[8] T.Graham,On the Relation of Hydrogen to Palladium,J.Franklin Inst.,Vol.87, pp.256-266, 1869.
[9] 廖世傑,儲氫技術及應用簡介,工業材料,Vol.190,p.139,2002.
[10] M. Jurczyk, L. Smardz, K. Smardz, et al.,Nanocrystalline LaNi5
-type Electrode Materials for Ni-MHx Batteries,J.Solid State Chem.,Vol.171,p.30,2003.
[11] J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning,Reversible Room
-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds,Philips Res. Repts., Vol.25, p.133, 1970.
[12] A. Pebler and E.A. Gulbransen,Equilibrium Studies on the
Systems ZrCr2-H2,ZrV2-H2 and ZrMo2-H2 Between 0℃ and 900℃, Trans. Metall. Soc. AIME,Vol.239, p.1593, 1967.
[13] J.J. Reilly, R.H. Wiswall,The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4,Inorg. Chem., Vol.7, p.2254, 1968.
[14] J.J. Reilly, R.H. Wiswall,Formation and Properties of Iron
Titanium Hydride,Inorg. Chem., Vol.13, p.218, 1974.
[15] 林美姿,儲氫合金之開發與應用,材料與社會,Vol.81,p.61,1993.
[16] 大角泰章著,金屬氫化物的性質與應用,吳永寬,苗艷秋譯,北京
化學工業出版社,pp.19-40,1990.
[17] G. Sandrock,A Panoramic Overview of Hydrogen Storage Alloys From a Gas Reaction Point of View, J. Alloys Comp.,Vol.293-
295, p.877, 1999.
[18] T. Kodama,Proposal for New Indexes Describing the Degree of
Hysteresis and Those Applications to the ZrMn2–H2 systems, J.
Alloys Comp., Vol.278,pp.194-200, 1998.
[19] J.M. Joubet, M. Latroche,Hydrogen Absorption Properties of
Several Intermetallic Compounds of the Zr─Ni System, J.Alloys Comp., Vol.231,pp.494-497, 1995.
[20] M. Hara, Y. Hatano, T. Abe, et al.,Hydrogen Absorption by Pd-
Coated ZrNi Prepared by Using Barrel-Sputtering System, J.
Nuclear Materials, Vol.320, pp.265-271, 2003.
[21] B.K. Singh, A.K. Singh, A.M. Imam, et al.,On the Structural
Characteristics and Hydrogenation Behaviour of TiMn1.5 Hyd-
-rogen Storage Material , Int. J.Hydrogen Energy,Vol.26,pp.817
-821, 2001.
[22] C.H. Chiang, Z.H. Chin, T.P. Perng,Hydrogenation of TiFe by High-Energy Ball Milling, J. Alloys Comp., Vol.307, p.259, 2000.
[23] G. Lee, J.S. Kim, Y.M. Koo, S.E. Kulkova,The Adsorption of
Hydrogen on B2TiFe Surfaces, Int. J. Hydrogen Energy, Vol.
27, pp.403-412, 2002.
[24] 林文德,廖世傑,儲氫系統設計,工業材料,Vol.190,p.155,2002.
[25] J.J. Sheridan, F.G. Eisenberg, E.J. Greskovich, et al.,Hydrogen Separation From Mixed Gas Streams Using Reversible Metal Hydrides, J. Less-Common Met.,Vol.89,p.447, 1983.
[26] M.Kawamura,S.Ono,Y.Mizuno,Dynamic Characteristics of a Hydride Heat Storage System,J.Less-Common Met.,Vol.89, p.365,1983.
[27] 大角泰章著,金屬氫化物的性質與應用,吳永寬,苗艷秋譯.北京
,化學工業出版社,p.240,1990.
[28] 鍾俐娟,電動車的發展概況,材料與社會,Vol.80,p.123,1993.
[29] D.F.Gosden,Battery Requirements for Electric Vehicles,Journal of Power Sources, Vol.45, pp.61-71, 1993.
[30] F. Zhan, L.J. Jiang, B.R. Wu, et al.,Characteristics of Ni/MH Power Batteries and Its Application to Electric Vehicles, J. Alloys Comp., Vol.293-295, p.804, 1999.
[31] H. Imai, T. Tagawa, K. Nakamura,Catalytic Activities of Hydro-
-gen Storage Alloys for Decompositon of Alcohols, Appl. Catal., Vol.62, p.348, 1990.
[32] R.K. Ibrasheva, T.A. Solomina, G.I. Leonova, et al.,Role of Active Surface in Processes of Hydrogen Sorption-Desorption
by Intermetallic Compounds, Int.J. Hydrogen Energy, Vol.18, pp.
505-510, 1993.
[33] T. Takeshita, W.E. Wallace, R.S. Craig, Rare Earth Inter-
-metallics as Synthetic Ammonia Catalysts, J. Catal., Vol.44, p.236, 1976.
[34] 鎂的特性,中文維基百科,維基媒體基金會,2002.
[35] Brenner, Abner, Electrodeposition of alloys principle and practice, New York :Academic Press,1963.
[36] 劉伯生,非水溶液電鍍,南昌航空工業學院,表面技術,1991年,第20卷,第1期,pp.1-6.
[37] 廖世傑,儲氫技術及應用簡介,工業材料,Vol.190,p.152,2002.
[38] 林美姿,儲氫合金之開發與應用,材料與社會,Vol.81,p.82,1993.
[39] R.Mcintyre,O.R.Brown,The magnesium and magnesium ama-
-lgam electrodes in aprotic organic solvents a kinetic study,
Electrochimica Acta,Vol.30,No.5,pp. 627-633,1985.
[40] C.Liebenow,A novel type of magnesium ion conducting polymer electrolyte,Electrochimica Acta,Vol.43,No.10-11,pp.1253-1256
,1997.
[41] Alexander Schechter,Doron Aurbach,et al,On the mechanisms of reversible magnesium deposition processes,Journal of The Electrochemical Society,Vol. 148,No. 9,pp.A1004-A1014,2001.
[42] 王建朝,二甲基甲酸胺中電沉積鎂鎳合金的研究,青海師範大學學報(自然科學版),第2期,2003.
[43] 張曉燕,劉衛紅,N,N-二甲基甲酸胺中電沉積製備鎂鎳儲氫合,化學學報(Acta chimica sinica),第65卷,第7期,pp.575-578
,2007.
[44] Jun Yang,Yanna NuLi,et al,Electrochemical Magnesium Deposition and Dissolution with High Efficiency in Ionic Liquid,
Electrochemical and Solid-State Letters, Vol. 8,No. 11,pp.C1
66-C169 ,2005.
[45] Yanna NuLi,et al, Electrodeposition of magnesium film from
BMIMBF4 ionic liquid, Applied Surface Science,Vol. 252,pp.
8086–8090,2006.
[46] Jun Yang,et al, Study of Key Factors Influencing Electro-
-chemical Reversibility of Magnesium Deposition and Dissolution, Journal of The Electrochemical Society,Voll.153,
No.10,pp. C689-C693,2006.
[47] Yanna NuLi,et al,Mixed ionic liquids as electrolyte for reverseble deposition and dissolution of magnesium, Surface & Coatings Technology,Vol. 201,pp. 3783–3787,2006.
[48] 鎳的特性,中文維基百科,維基媒體基金會,2002..
[49] 鄭家宏,以微陽極導引電鍍法製作鎳銅合金微柱,國立中央大學
機械工程研究所碩士論文,2005.
[50] Ramona Y.Ying, Electrodeposition of Copper-Nickel Alloys from Citrate Solutions on a Rotating Disk Electrode I. Experiment Results, J. Electrochem. Soc:Electrochemical Science and Technology, Vol.135, No.12 ,pp. 2964-2971,1988.
[51] Brenner,Abner,Electrodeposition of alloys principle and practice,New York:Academic Press,1963.
[52] Lang’s Handbook of Chemistry,11thed.,McGraw Hill,Inc.,New York,pp.5-45~5-65,1974.
[53] 廖龍標,劉衛紅,硼酸對鎳-鎂合金電沉積和電化學性質的影響,上海大學學報(自然科學版),第9卷,第4期,pp.369-372,2003.
[54] Keith B. Oldham and Jan C. Myland,Fundamentals of Electro-
-chemical Science,Academic Press,Inc., New York,pp.35-39,
1994.
[55] 單秀萍,劉衛紅,電沉積工藝對Mg-Ni儲氫合金的電化學性能的影響,化學研究(Chemical Research),第16卷,第1期,pp.55-58
,2005.
[56] Liu W. H.,Wu H. Q.,Lei Y. Q.,et al.,Amphous and Electro-
-chemical hydrogen storage properties of mechanically
alloyed Mg-Ni, J. Alloys Compds,Vol.252,pp.234-237,1997.
指導教授 林景崎(J.C. Lin) 審核日期 2008-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明