博碩士論文 953203051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.12.154.133
姓名 杜宗曄(Zong-Ye Du)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 液珠撞擊熱板之飛濺行為現象分析
(Splashing phenomenon analysis of droplet imping onto hot surface)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析
★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析★ 交流電發光二極體之接面溫度量測
★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析
★ KY法生長大尺寸氧化鋁單晶之數值模擬分析★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析
★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究★ CZ法生長大尺寸藍寶石單晶之熱流場與溶質數值模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 半導體產業與微機電元件之發展使液滴現象的探討愈來愈重要。本研究針對不同黏滯度溶液在不同環境因素下,液滴撞擊基板後會產生不同型態的變化進行分析與探討。為觀察這些現象,以不同的液滴的撞擊速度、液滴溶液黏滯度及基板溫度作為實驗控制變數,輔以高速攝影機(CCD camera)觀測(400frames/s)液滴碰撞基板表面(該基板表面溫度控制在液滴之沸點(含)以下),所產生擴展(spreading)、飛濺(splashing)、迴縮(recoil)、向上拉升(rebound)、震盪與穩定等現象。
本研究以無因次化參數雷諾數(Re=ρvDμ )與韋伯數(We=ρuD2/σ) 為指標,探討液滴最大擴展半徑與飛濺現象。實驗結果發現雷諾數增加會使液滴最大擴展半徑增加。另外,韋伯數是引發飛濺現象的主要因素,並比較水與矽油之飛濺現象,發現同撞擊速度下其矽油較水易發生飛濺,水需較大的撞擊速度來達到飛濺。在矽油μ為10 cp之情況發生飛濺的韋伯數為 420,而水為 580,而液滴撞擊後擴展時能量積於外緣產生指狀現象(finger pattern ),給予更高的撞擊速度便更易於碎裂。因此飛濺現象發生多在高韋伯數液滴。矽油溶液之液滴,增加基板溫度使撞擊液滴的表面張力以及黏滯力變小,其擴展半徑增大,故較不易發生飛濺現象。增加基板溫度若超過沸點於110°C時,水液滴在韋伯數下(We > 280),也易形成破碎飛濺現象。
摘要(英) The phenomena of the droplet impact play an important role on the semiconductor industry and the development of micro-electro-mechanical (MEM)system. The different patterns of droplet will be obtained when it is impacted at different parameters such as impact velocities, liquid dynamics viscosity, and substrate temperatures. The high-speed camera (CCD camera) with four hundred frames per second is used to observe and analyze these phenomena including the expansion (spreading), the flying (splashing), the turning back (recoil), the going upward (rebound), the concussion and the stability and so on. The temperature imposes on substrate at the value which is higher than the boiling temperature for water droplet case is also studied.
The results indicate that the droplet impacts with different Weber number (We), the higher We number is, the higher spreading coefficient obtains. If the impact velocity increases, the droplet will be become the instability finger pattern. After that, droplet will be breakout if the impact velocity is higher. This means that when the We number increases, the droplet pattern changes from spreading to finger and splashing. Therefore, the phenomenon of splashing occurred in high We number, which is compare to spreading (180). For instance, when the We number is higher than 420, the splashing is observed for silicon oil case. When the substrate temperature changes, the splashing occurs only if the impact velocity is higher than those in case of lower temperature and the height of recoil is also different. The higher temperature is, the higher recoil obtains. For different liquids, we also observed the We number for the splashing phenomena occur in the water is higher than in the silicon oil. When the substrate temperature is higher than the liquid boiling temperature(110°C), we also observe that the water droplet is immediately rebound after impact on solid surface.
關鍵字(中) ★ 撞擊
★ 熱板
★ 飛濺
★ 液滴
關鍵字(英) ★ splashing
★ droplet
★ impact
★ hot surface
論文目次 摘要 ........................................................................................................... III
Abstract .................................................................................................... IV
誌謝 .......................................................................................................... VI
目錄 ......................................................................................................... VII
圖目錄 ........................................................................................................ X
表目錄 ................................................................................................... XIV
第一章 緒論 ........................................................................................... 1
1-1 前言 ........................................................................................... 1
1-2 文獻回顧 ................................................................................... 2
1-3 研究動機及目的 ....................................................................... 8
1-4 研究方法 ................................................................................... 9
第二章 液滴撞擊平板現象與基本理論 ............................................. 14
2-1 液滴撞擊基板能量作用 ......................................................... 14
2-2 撞擊平板之液滴變形理論 ..................................................... 15
2-3 液滴撞擊最大直徑 ................................................................. 16
2-4 液滴撞擊飛濺現象 ................................................................. 18
2-5 液滴撞擊手指現象 ................................................................. 20
2-6 液滴撞擊熱板 ......................................................................... 20
第三章 實驗裝置與步驟 ..................................................................... 29
3-1 實驗儀器 ................................................................................. 29
3-1-1 接觸角度量測儀(Dataphysics OCAH200) ............. 29
3-1-2 接觸角度分析軟體(Software SCA 20~22) ............ 29
3-1-3 光學攝影定位腳架 ....................................................... 30
3-1-4 滴定升降定位控制 ....................................................... 30
3-1-5 熱電偶量測儀 ............................................................... 30
3-1-6 工作流體 ....................................................................... 31
3-2 實驗步驟說明 ......................................................................... 31
3-2-1 詴片清洗 ....................................................................... 31
3-2-2 詴片放置平台 ............................................................... 32
3-2-3 液滴滴落高度設置 ....................................................... 32
3-2-4 溫度控制平台 ............................................................... 32
3-2-5 滴定針頭 ....................................................................... 32
3-2-6 液滴體積之控制及量測 ............................................... 33
3-2-7 液滴影像之擷取 ........................................................... 33
3-2-8 實驗數據讀取與分析處理 ........................................... 34
3-3 無因次參數分析 ..................................................................... 36
第四章 實驗結果與討論 ..................................................................... 44
4-1 不同材質流體之影響 ............................................................. 44
4-2 撞擊速度之影響 ..................................................................... 46
4-3 擴散到飛濺之能量分析 ......................................................... 49
4-4 表面溫度之影響 ..................................................................... 51
4-5 表面材質之影響 ..................................................................... 53
4-6 液滴內的氣泡現象 ................................................................. 55
第五章 結論與未來方向 ..................................................................... 85
5-1 結論 ......................................................................................... 85
5-2 未來方向 ................................................................................. 88
參考文獻 ................................................................................................... 89
參考文獻 1. A.M. Worthington. On the forms assumed by drops of liquids falling vertically on horizontal plate. Proceedings of the Royal Society of London A 25, 261-271 (1876).
2. A.M. Worthington. A Second Paper on the Forms Assumed by Drops of Liquids Falling Vertically on a Horizontal Plate. Proceedings of the Royal Society of London 25, 498-503 (1876 - 1877).
3. A.M. Worthington. On impact with a liquid surface. Proceedings of the Royal Society of London A 34, 217-230 (1883).
4. O.G. Engel. Waterdrop collisions with solid surfaces. J. Rec. Nat.Bure. Stand 54, N0. 5, 281-298, (1955).
5. C. Mundo, M. Sommerfeld, and C. Tropea. Droplet-Wall Collisions: Experimental Studies Of The Deformation And Breakup Process. Int. J. Multiphase Flow 21, No. 2, 151-173 (1995).
6. B.S. Gottfried, C.J. Lee, and K.J. Bell. The Leidenfrost Phenomenon: Film Boiling of Liquid Droplets on a Flat Plat. Int.J. Heat Mass Transfer 9, 1167-1187 (1966).
7. L. Legert and J.F. JoannyS. Liquid spreading. Rep. Prog. Phys 431, 486 (1992).
8. B.L. Scheller and D.W. Bousfield. Newtonian drop impact with a solid surface. AIChE Journal 41, 1357-1367 (1995).
9. J. Fukai, Y. Shiiba, and T. Yamamoto. Wetting effect on the spreading of a liquid droplet colliding with a flat surface :Experiment and Modeling. Phys. Fluids 7(2), 236-247 (1995).
10. X. Zhang and O.A. Basaran. Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface. Journal Of Colloid And Interface Science 187, 166–178 (1997).
11. J.D. Bernardin, C.J. Stebbins, and I. Mudawar. Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Int J. Heat Mass Transfer. 40, 247-267 (1997).
12. Ted Mao, D.C. S., and K.H. Tran. Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE Journal 43, 2169-2179 (1997).
13. S.T. Thoroddsen and J. Sakakibara. Evolution of the fingering pattern of an impacting drop. Physics Of Fluids 10, 1359 (1998).
14. 黃文欽, 液滴與液膜交互作用之研究, 國立台灣大學應用力學研究所碩士論文. 2000.
15. S.Sikalo, M.Marengo, C.Tropea, and E.N.Granic. Analysis of impact of droplets on horizontal surfaces. Experiments Thermal and Fiuid Science 25, 503-510 (2002).
16. 廖偉辰, 牛頓流體與非牛頓流體液滴碰撞之研究, 國立中正大學化學工程研究所碩士論文. 2003.
17. S.L. Manzello and J.C. Yang. An experimental investigation of water droplet impingement on a heated wax surface. International Journal of Heat and Mass Transfer 47, 1701–1709 (2004).
18. P.G.d. Gennes, F.B. Wyart, and D. Quere. Capillarity and Wetting Phenomena. Springer, New York,, 17 (2004).
19. A.L. Yarin. Drop Impact Dynamics: Splashing,Spreading, Receding, Bouncing. . . The Annual Review of Fluid Mechanics 38, 159-192 (2006).
20. S.R.L. Werner, J.R. Jones, A.H.J. Paterson, R.H. Archer, and D.L. Pearce. Droplet impact and spreading: Droplet formulation effects. Chemical Engineering Science 62, 2336-2345 (2007).
21. J.e.D. Coninck, M.J.d. Ruijter, and M. Vou´. Dynamics of wetting. Current Opinion in Colloid & Interface Science 6, 49-53 (2001).
22. CHR. Mundo, M. Sommerfeld, and C. Tropea. Droplet-Wall Collisions : Experimental Studies of The Deformation and Breakup Process. Int. J. Multiphase Flow 21, No. 2, 151-173 (1995).
23. G.E. Cossali, A. Coghe, and M. Marengo. The impact of single drop on a wetted solid surface. Experiments in Fluids 22, 463-472 (1997).
24. P.V. Hobbs and T. Osheroff. Splashing of Drops on Shallow Liquids. Science 158, 1184-1186 (1967).
25. P. H. Gregory, E.J. Guthrie, and M. E. Bunce. Experiment on splash dispersal of fungus spores. J. Gen. Microbiol 20, 328-354 (1959).
26. H.A. Stone and L.G. Leal. Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. Journal of Fluid Mechanics Digital Archive 198, 399-427 (1989).
27. A.-B. Wang and C.-C. Chen. Splashing impact of a single drop onto very thin liquid films. Physics Of Fluids 12, 2155-2158 (2000).
28. C.D. Stow and R.D. Stainer. The physical products of a splashing water drop. Journal of the Meteorological Society of Japan 55, No.5, 518-531 (1977).
29. A.L. Yarin and D.A. Weiss. Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematical discontinuity. Journal Fluid Mech 283, 141-173 (1995).
30. G.E. Cossali, M. Marengo, and M. Santini. Thermally induced secondary drop atomisation by single drop impact onto heated surfaces. International Journal of Heat and Fluid Flow 29, 167-177 (2008).
31. K. Araki and A. Moriyama. Theory on Deformation Behavior of a Liquid Droplet Impinging onto Hot Metal Surface. Transactions of the Iron and Steel Institute of Japan 21, 583-590 (1981).
32. L.Y. Alexander, L. Wenxia, and H.R. Darrell. Motion of droplets along thin fibers with temperature gradient. Journal of Applied Physics 91, 4751-4760 (2002).
33. Wheeler.D, Bailey.C, and Cross.M. Numerical modelling and validation of Marangoni and surface tension phenomena using the finite volume method. International Journal for Numerical Methods in Fluids 32, 1021-1047 (2000).
34. J.A. Sethian and P. Smereka. Level Set Methods For Fluid Interfaces. Annual Review of Fluid Mechanics 35, 341-372 (2003).
35. K. Range and F. Feuillebois. Influence of Surface Roughness on Liquid Drop Impact. Journal of colloid and interface science 203, 16-30 (1998).
36. S. Chandra and C.T. Avedisian. On the collision of a droplet with a solid surface. Proceedings of the royal society of London, series A: mathematical and physical sciences 432, 13-41 (1991).
37. C.D. Stow and M.G. Hadfield. An experimental investigation of fluid flow resulting from the impact of water drop with an unyielding. Proc. R. Soc. London A 373, 419-441 (1981).
38. Z.N. Wu. Approximate critical Weber number for the breakup of an expanding torus. Acta Mechanica 166, 231-239 (2003).
39. L. Rayleigh. On the Capillary Phenomena of Jets. Proceedings of the Royal Society of London 29, 71-97 (1879).
40. R.N. Wenzel. Resistance Of Solid Surfaces To Wetting By Water. Ind. Eng. Chem. 28, 988-994 (1936).
41. 王安邦, 林志宏, and 陳祈彰. 液滴撞擊加熱平板之模態分析. 力學 17 (2001).
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2008-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明