![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:12 、訪客IP:18.222.146.86
姓名 張瑞文(Ray-wen Chang) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 新潔淨氫能觸媒熱電產生器:製造、量測與模擬
(A New Clean Hydrogen-Catalytic-Thermoelectric Power Generator: Manufacture, Measurement and Simulation)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文以氫為燃料,整合三項潔淨節能技術,即熱再循環、觸媒反應與熱
電轉換技術,實作一可攜式零CO2 排放之熱電產生器(thermoelectric
generator, TEG),其核心組件有三:(1)瑞士捲觸媒熱源產生器(Swiss-roll
catalytic heat source, SRCHS),(2)熱電模組(thermoelectric modules, TEM)和(3)
熱沉裝置(heat sink, HSi),依序以三明治堆疊方式而組成。本研究有三組同
樣尺寸但不同材料之SRCHS,其面積為50×50 mm2 而厚度僅為10 mm,分
別採用銅、不鏽鋼S304 和陶瓷材料B85 所製成,其熱傳導係數分別為k =
385、26 和0.38 Wm-2K-1,三組SRCHS 內均含有以CNC 車床加工之1.5 圈
瑞士捲流道(截面積4×4 mm2),流道內置入蜂巢式白金觸媒塊長5 mm,當
預混氫/空氣燃料經流道入口通過白金觸媒,在常溫時即可產生化學反應並
釋放熱。因瑞士捲流道具有熱再循環特性,故可提供均勻的熱源給TEM,
再以多種不同熱交換設計概念之HSi,來穩定控制以碲化鉍(Bismuth
Telluride, Bi2Te3, 最高操作溫度400oC) 為材料之TEM 熱冷兩端的溫差,同
時並探討不同壓力負載對TEG 系統功率密度之影響。在實驗量測方面,針
對不同氫體積濃度([H2] = 6% ~ 13%)及不同雷諾數 (Re = VfD/v = 500 ~
3,000;Vf 為燃料流速,D 為流道寬度而v 為燃料運動黏滯係數),以10 支K
型熱電偶沿著瑞士捲流道及在觸媒塊前後,定量量測反應後溫度隨時間之
變化,並使用3 組熱電偶貼片量測SRCHS 和TEM 間之表面溫度,以找出
適當溫度控制之範圍,使系統功率可達最高;同時,也採用氣體分析儀,
量測[H2]、[O2]和[NOx]等排放物之濃度。在數值分析方面,我們首度建立
了三維模式,以CFD-RC 軟體結合13 個白金觸媒表面反應機制,並考慮
SRCHS 邊界之熱損失,合理地預測SRCHS 之化學反應流特性,模擬結果
與實驗量測結果相符合。經由一系列完整測試與分析,我們找到以B85 為
材料之SRCHS 有最大之熱再循環效應,在[H2] = 12%、Re = 2,000 和系統壓
力負載為200 psi 條件下,控制TEM 熱冷端溫差在200oC,可獲得高達540
mWcm-2 之系統功率密度。此一創新可攜式熱電產生器,完全沒有二氧化碳
和氮氧化物之排放,為一潔淨能源新技術,可提供許多電子產品,例如照
明燈具、手機、隨身聽、手提電腦等等,其使用或充電所需之電源。未來
若能結合高溫型之TEM,可研發高功率之熱電產生器,來驅動新世代無污
染之熱電汽車。摘要(英) This thesis uses hydrogen as a fuel and combines three clean energy-saving technologies,
including heat-recirculating, catalytic reaction, and thermoelectric conversion techniques, to
innovate and devise a portable thermoelectric generator (TEG) with zero CO2, CO and NOx
emissions. The TEG has three key components: (1) the Swiss-roll catalytic heat source
(SRCHS), (2) the thermoelectric module (TEM), (3) and heat sink (HSi), which are
sequentially sandwiched. Three SRCHSs of the same size (50 × 50 × 10 mm) but using
different materials including copper (Cu), stainless steel (S304), and ceramic (B85) with
corresponding thermal conductivities 385, 26, and 0.38 Wm-2K-1 are manufactured by the
CNC machine. All three SRCHSs have 1.5-turn Swiss-roll reactant and product channels
having 4×4 mm2 cross-sectional areas. A 5-mm long platinum honeycomb catalyst is placed
on the entrance reactant channel to produce heat via surface reaction when H2/air premixtures
are flowing through the Pt honeycomb catalyst even at room temperature. Because SRCHS
has heat-recirculating characteristics, it can provide uniform heat source to TEM together with
different heat exchange designs of HSi and thus the wanted temperature gradient across the
TEM can be stably controlled. The TEM material is Bismuth Telluride (Bi2Te3) and its
maximum operation temperature is 400oC. In addition, the effect of different loading pressure
to the power density output of the TEG system is measured and discussed. For experimental
measurements, we use 10 K-type thermocouples along the SRCHS channel and in front of the
Pt honeycomb catalyst and behind to measure temperature distributions as a function of time
in the SRCHS. Three cement-on thermocouples are used to measure surface temperatures on
the top area of the SRCHS. The hydrogen concentration in volume percentage varying from
[H2] = 6% to [H2] = 13% is applied with a wide range of the flow Reynolds number (Re =
VfDv-1) varying from 500 to 3000, where Vf is the reactant velocity, D is the width of the
channel, and v is the kinematics viscosity of the reactant. Moreover, emission of [H2], [O2],
[NOx] and more are measured by the gas analyzer. For numerical Simulations, a 3D model is
established using CFD-RC package combined with 13 platinum surface reaction mechanisms
with the consideration of heat losses to predict chemical reacting flows in the SRCHS.
Numerical predications are in consistent with experimental measurements. It is found that the
B85 SRCHS with very small thermal conductivity has the maximum heat recirculation among
three SRCHSs, using [H2] = 12% and Re = 2,000 in the SRCHS, applying the water-cooling
HSi, and adding a pressure load of 200 psi to the TEG system, the temperature difference
across the TEM can be controlled at 200 oC, yielding the best power performance with a
power density as high as 540 mW/cm2. This novel portable TEG is free of CO2 and NOx,
which is a new clean energy technology and can used for many small electrical devices.關鍵字(中) ★ 熱電產生器
★ 熱電材料
★ 觸媒反應
★ 熱再循環
★ 氫能利用關鍵字(英) ★ hydrogen usage
★ hear-circulating
★ catalytic reaction and thermoelectric generator論文目次 摘要........................................................................................................................I
Abstract ..................................................................................................................II
誌謝..................................................................................................................... III
目錄.....................................................................................................................IV
表目錄................................................................................................................VII
圖目錄.............................................................................................................. VIII
符號說明.............................................................................................................. X
第一章 介紹......................................................................................................... 1
1.1 研究動機.....................................................................................................................1
1.2 問題所在.....................................................................................................................2
1.3 解決方法.....................................................................................................................3
1.4 論文概要.....................................................................................................................4
第二章 文獻回顧................................................................................................. 5
2.1 熱再循環原理與應用.................................................................................................5
2.2 觸媒燃燒技術原理與應用..........................................................................................7
2.3 熱電效應原理與應用.................................................................................................9
2.3.1 Seebeck Effect .................................................................................................10
2.3.2 Peltier Effect ....................................................................................................10
2.3.3 Thomson Effect ............................................................................................... 11
第三章 實驗設備與實驗方法........................................................................... 19
3.1 TEG 系統...................................................................................................................19
3.1.1 SRB 主體.........................................................................................................19
3.1.2 觸媒材料........................................................................................................20
3.1.3 熱電元件........................................................................................................20
3.1.4 熱交換器系統................................................................................................21
3.2 燃氣供應系統...........................................................................................................21
3.2.1 燃氣供應系統與混合裝置.............................................................................21
3.2.2 燃氣操作條件.................................................................................................22
3.3 量測儀器系統...........................................................................................................23
3.3.1 溫度量測系統.................................................................................................23
3.3.2 輸出功率量測系統........................................................................................24
3.3.3 尾氣氣體量測系統........................................................................................24
3.4 實驗方法與流程.......................................................................................................25
3.5 實驗誤差分析...........................................................................................................26
第四章 數值分析............................................................................................... 33
4.1 統御方程式................................................................................................................33
4.2 觸媒化學反應............................................................................................................34
4.3 計算區域...................................................................................................................35
4.4 邊界條件設定...........................................................................................................37
第五章 結果與討論........................................................................................... 45
5.1 SRCHS 之設計與性能測試....................................................................................45
5.1.1 SRCHS 之較佳材料.......................................................................................45
5.1.2 Re 與[H2]對SRCHS 之效應.......................................................................47
5.2 電源產生器較佳操作條件......................................................................................49
5.2.1 觸媒擺放位置對TEG 之效應......................................................................49
5.3 數值分析結果...........................................................................................................52
第六章 結論與未來工作................................................................................... 63
6.1 結論...........................................................................................................................63
6.2 未來工作...................................................................................................................64
參考文獻............................................................................................................. 65參考文獻 參考文獻
[1] Freese, B., Coal: A Human History, Perseus, Cambridge (2003).
[2] Crabtree, G. W., Dresselhaus, M. S. and Buchanan, M. V., Physics Today.
December, http://www.physicstoday.org (2004).
[3] Turner, J. A., Science 285, 687 (1999); Special Report: Toward a Hydrogen
Economy, Science 305, 957 (2004).
[4] US Department of Energy, Office of Basic Energy Sciences, Basic Research
Needs for the Hydrogen Economy, US DOE, Washington, available at
http://www.sc.doe.gov/bes/hydrogen.pdf (2004).
[5] Basic Energy Sciences Advisory Committee, Basic Research Needs to
Assure a Secure Energy Future, US DOE, Washington, available at
http://www.sc.doe.gov/bes/reports/files/SEF_rpt.pdf (2003).
[6] Committee on Alternatives and Strategies for Future Hydrogen Production
and Use, The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D
Needs, National Research Council, National Academies Press, Washington,
available at http://www.nap.edu/catalog/10922.html (2004).
[7] (OPEC), http://www.opec.org/library/FAQs/PetrolIndustry/q7.htm (2006).
[8] Lloyd, S. A. and Weinberg, F. J., “A burner for mixtures of very low heat
content”, Nature 251, 47-49 (1974).
[9] Lloyd, S. A. and Weinberg, F. J., “Limits to energy release and utilization
from chemical fuels”, Nature 257, 367-370 (1975).
[10] Jones, A. R., Lloyd, S. A. and Weinberg, F. J., “Combustion in heat
exchanger”, Proc. R. Soc. Lond. A 360, 97-115 (1978).
[11] Sitzki, L. Borer, K. Schuster, E. and Ronney, P. D., “Combustion in
microscale heat-recirculating burner”, The 3rd Asia-Pacific Conference on
combustion June 24-27, Seoul, Korea (2001).
[12] Ahn, J. Eastwood, C. Sitzki, L. and Ronney, P. D., “Gas-phase and catalytic
combustion in heat recirculating burners”, Proc. Combust. Inst. 30,
2463-2472 (2004).
[13] Tanaka, L. Sinoda, M. and Aria, N., “Combustion characteristics of a
heat-recirculating ceramic burner using a low-calorific-fuel”, Energy
Convers. Manage 42, 1897-1907 (2001).
[14] Sinoda, M. Tanaka, R. and Arai, N., “Optimization of heat transfer
performances of a heat-recirculating ceramic burner during methane/air and
low-calorific-fuel/air combustion”, Energy Convers. Manage 43,
1479-1491 (2002).
[15] Jugjai, S. and Rungsimuntuchart, N., “High efficiency heat-recirculating
domestic gas bureners”, Exp. Therm Fluid Sci. 26, 581-592 (2002).
[16] Kim, N. Kato, S. Kataoka, T. Yokomori, T. Maruyams, S. Fujimori, T. and
66
Maruta, K., “Flame stabilization and emission of small Swiss-roll
combustors as heaters”, Combust. Flame 141, 229-240 (2005).
[17] Hayes, R. E. and Kolaczkowski, S. T., Introduction to calaytic combustion,
Gordon and Breach Science Publishers (1997).
[18] Pfefferrle, W. C. Heck, R. M., Carrubba, R. M. and Robert, G. W.,
“Catathermal combustion: a new process for low-emission fuel conversion”,
ASME Paper 75-WA/FU-1 (1975).
[19] Pfefferrle, W. C. and Pfefferrle, L. D., “Catalytically stabilized combustion”,
Prog. Energy Combust. Sci. 12, 25-41 (1986).
[20] Pfefferrle, L. D. and Pfefferrle, W. C., “Catalysis in combustion catalysis”,
Cat. Rev. –Sci. Eng. 29, 219-267 (1987).
[21] Schlegel, A. Buser, S. and Benz, P., “NOx formation in lean premixed
noncatalytic and catalytically stabilized combustion of propane”, Proc.
Combust. Inst. 25, 1019-1026 (1994).
[22] Schlegel, A. Benz, P. Griffin, T. Weisenstein, W. and Bockhom, H.,
“Catalytic stabilization of lean premixed combustion: method for
improving NOx emissions”, Combust. Flame 105, 332-340 (1996).
[23] Bond, T. C. Noguchi, R. A. Chou, C. P. Mongia, R. K. Chen, J. Y. and
Dibble, R. W., “Catalytic oxidation of natural gas over supported platinum:
flow reactor experiments and detailed numerical modeling”, Proc. Combust.
Inst. 26, 1771-1778 (1996).
[24] Maruta, K. Takeda, K. Sitzki, L. Borer, K. and Ronney, P. D., ”Catalytic
combustion in microchannel for MEMS power generation”, The 3rd
Asia-Pacific Conference on combustion, June 24-27, Seoul, Korea (2001).
[25] Takeda, K. Jeongmin, A. Borer, K. Sitzki, L. and Ronney, P. D., “Extinction
limits of catalytic combustion in microchannels”, Proc. Combust. Inst. 29,
957-963 (2002).
[26] Chao, Y. C. and Chen, G. B., “Ignition hysteresis of hydrogen-air mixture in
a platinum monolith honeycomb reactor”, The 3rd Asia-Pacific Conference
on combustion, June 24-27, Seoul, Korea (2001).
[27] Yang, B., “Thermoelectric technology assessment”, Air-conditioning and
refrigeration technology institute, INC, 4100 N. Fairfax Drive, Suite 200,
Arlington, Virginia 22203-1678 (2007).
[28] Seebeck, T. J., “Magnetic polarization of metals and minerals”,
Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin 265,
1822-1823 (1821).
[29] Peltier, J. C., “Nouvelles expériences sur la caloricité des courants
électriques,” Ann. Chim. 56, 371 (1834).
67
[30] Thomson, W., “On the dynamical theory of heat; with numerical results
deduced from Mr. Joule's equivalent of a thermal unit and M. Regnault's
observations on steam”, Math. and Phys. Papers 1, 175-183 (1851).
[31] Schaevitz, S. B. Franz, A. J. Jensen, K. F. and Schmidt, M. A., ”A
combustion-based mems thermoelectric power generator”, The 11th
International Conference on Solid-State Sensors and Actuators, June 10-14,
Munich, Germany (2001).
[32] Esarte, J. Min, G. and Rowe, D. M., “Modeling heat exchangers for
thermoelectric generators”, J. Power Sources 93, 72-76 (2001).
[33] Norton, D. G. Voit, K. W., Brüggemann, T. and Vlachos, D. G., “Portable
power generation via integrated catalytic microcombustion-thermoelectirc
devices”, 24th Army Science Conference, November 29-30, Orlando, U.S.A
(2004).
[34] Norton, D. G. Wetzel, E. D. and Vlachos, D. G., “Thermal management in
catalytic microreactors”, Ind. Eng. Chem. Res. 45, 76-84 (2006).
[35] 王志華, “潔淨能源:超焓燃燒器研發”, 國立中央大學機械工程研究所碩
士論文 (2002)。
[36] 吳昇哲, “小型熱再循環觸媒燃燒器之實驗研究及應用”, 國立中央大學
機械工程研究所碩士論文 (2003)。
[37] 楊竣傑, “氫能利用:過焓觸媒熱電產生器之實作研究”, 國立中央大學機
械工程研究所碩士論文 (2004)。
[38] 鄭偉隆, “低氮氧化物燃燒器實驗和數值研究及其應用”, 國立中央大學
機械工程研究所碩士論文 (2005)。
[39] 陳致銘, “氫能利用:新型可攜式潔淨電源產生器實作與數值分析”, 國立
中央大學機械工程研究所碩士論文 (2007)。
[40] Hi-Z Technology Inc. http://www.hi-z.com.
[41] Deutschmann, O. Schmidt, R. Behrendt, F. and Warnatz, J., “Numerical
modeling of catalytic ignition”, Proceedings of the 26th Symposium
(International) on Combustion, Pittsburgh, 1747–1754 (1996).
[42] Warnatz, J. Allendorf, M. D. Kee, R. J. and Coltrin, M. E., “A model of
elementary chemistry and fluid mechanics in the combustion of hydrogen
on platinum surface”, Combustion and Flame 96, 393-406 (1994).
[43] Hayes, R. E. and Kolaczkowski, S. T., Introduction to catalytic combustion,
Gordon and Breach Science Publishers (1997).
[44] Incropera, F. P. and DeWitt, D. P., Fundamentals of Heat and Mass Transfer,
New York (1996).
[45] 台灣-工德股份有限公司,http://www.kumtek.com.tw/aboutus.html。
[46] Fuller, E. N. Schettler, P. D. and Giddings, J. C., “A new method for
68
prediction of binary gas-phase diffusion coefficient", Ind. Eng. Chem. 58,
19-27 (1996).
[47] Weinberg, F. J. Rowe, D. M. Min, G. and Ronney, P. D., “On thermoelectric
power conversion from heat re-circulating combustion systems”, Proc.
Combust. Inst. 29, 941-947 (2002)
[48] The Freedonia Group, Portable power supplies, Global information, Inc
(2004).指導教授 施聖洋(Shenqyang (Steven) Shy) 審核日期 2008-7-24 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare