博碩士論文 953203060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.217.207.112
姓名 萬嘉仁(Jia-ren Wan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 寬鬆耗散性模糊控制-波雅定理
(Relaxed, dissipative fuzzy control - Polya theorem)
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ T-S模糊模型之建構、強健穩定分析與H2/H∞控制★ 廣義H2模糊控制-連續系統 線性分式轉換法
★ 廣義模糊控制-離散系統 線性分式轉換法★ H∞模糊控制-連續系統 線性分式轉換法
★ H∞模糊控制—離散系統 線性分式轉換法★ 強健模糊動態輸出回饋控制-Circle 與 Popov 定理
★ 強健模糊觀測狀態回饋控制-Circle與Popov定理★ H_infinity 取樣模糊系統的觀測型控制
★ H∞取樣模糊系統控制與觀測定理★ H-ihfinity取樣模糊系統動態輸出回饋控制
★ H∞模糊系統控制-多凸面法★ H∞模糊系統控制-寬鬆變數法
★ 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測★ 耗散性估測器-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 1. 使用Takagi-Sugeno 模糊模型和耗散性控制(dissipative control) 解決系統輸入受到有界非線性項影響的問題。
2. 使用波雅定理(P′olya’’s theorem) 的代數性質來建立一組線性矩陣不等式, 此組線性矩陣不等式可求得出一二次穩定之不保守解, 進而漸進至系統穩定之必要條件。
3. 結合波雅定理的代數性質與寬鬆矩陣變數(slack matrix variables) 方法來建立一寬鬆環境, 藉由此寬鬆環境可提升工具程式求解的性能(降低耗時、擴大解空間)。
第一部分,Takagi-Sugeno 模糊模型可完整地轉換原始的非線性系統, 並且可藉由Lyapunov 定理將系統穩定的檢測條件轉為線性矩陣不等式, 此一簡單且兼具數理基礎和系統化步驟的特色成為本篇文章使用的主要原因。承上, 我們先建立一具耗散性的模糊系統, 接著導入耗散性控制可藉由選取補充率(supply rate) 的特點來處理各種性能問題, 其中我們專注於系統輸入受到有界非線性項影響的處理方法, 首先對於一有界區域非線性項(sector-bounded nonlinearilities) 的輸入拆解成線性區和擾動區, 再設計一分散平行補償控制器(Parallel distributed compensation) 利用狀態回饋控制來控制系統。此外若希望加強系統對於有界非線性輸入的強健性, 我們必須要擴大對有界區域非線性輸入項的容忍, 但這意味著求解困難, 此一問題在第二部分獲得一解決方案。
第二部分, 在最近幾年的模糊控制文獻中, 大部分研究主要著重於找出一個共同P矩陣來滿足二次李亞普諾夫函數(quadratic Lyapunov function), 此一方法為充分但非必要條件, 且求解較保守(conservatism) 。在此我們使用了波雅定理(P′olya’’s theorem) 的代數性質來建立一組線性矩陣不等式, 此組線性矩陣不等式可求得出一二次穩定之不保守解(less conservative solution), 進而漸進至系統穩定之必要條件, 在數理方面證明了雙向的充要條件, 以工程的角度則可設計出使系統性能變好的控制器, 經模擬顯示, 由於軟硬體的限制使得程式無法真正得到最佳(或較佳) 的解(例如: 遲緩過程(slow progress), 迴圈上限, 耗時), 故而我們在第三部分提供一寬鬆環境來處理這個問題。
第三部分, 在閱讀文獻[1]-[5] 後, 我們將加入寬鬆矩陣變數的概念跟波雅定理做結合, 並以模擬的結果展現此一寬鬆環境可以加速求解過程, 並且給予的d值小於波雅定理所建議的d值卻可得到更大的解空間, 大大地增強以波雅定理設計控制器的可行性。
摘要(英) In this thesis, we propose a general quadratic dissipative state feedback control method to solve a stabilization problem for fuzzy system with sector-bounded type nonlinearities at the input.
The problem covers the bounded real, positive real and sector-bounded performance as a special case by choosing the corresponding quadratic supply rate.
Moreover, we also prove necessary and sufficient conditions to state feedback controllers ensuring quadratic stability for Takagi-Sugeno fuzzy systems in theory.
But our main objective is to generate a family of linear matrix inequalities based on an extension of Polya theorem (a.k.a. Matrix-valued Polya theorem).
The proposed conditions are stated as progressively less conservative sets of linear matrix inequalities,
allowing us to obtain a solution for the quadratic stabilizability problem whenever a solution exists.
At last, an additional relaxed condition is also provided, relying on the use of slack matrix variables.
All proposed methods will be shown via theoretical analysis and numerical simulations.
關鍵字(中) ★ 線性矩陣不等式
★ 有界非線性輸入
★ 耗散性控制
★ 波雅定理
★ 寬鬆環境
關鍵字(英) ★ Dissipative control
★ T-S model
★ Polya's theorem
★ Relaxed condition
★ Linear matrix inequality
論文目次 論文摘要 i
Abstract iv
誌謝 v
圖目 x
第一章 簡介 1
1.1 文獻回顧 1
1.2 研究動機 3
1.3 論文結構 4
1.4 符號標記 5
1.5 預備定理 7
1.6 耗散性之物理意義 8
第一部份:耗散性控制(Dissipativecontrol) 13
第二章 系統架構與耗散性檢測條件 13
2.1 系統架構 13
2.1.1 廣義非線性系統 13
2.1.2 非線性模糊系統 15
2.2 檢測耗散性條件 16
第三章 有界非線性輸入控制器之設計 23
3.1 有界非線性輸入系統 23
3.2 狀態回饋控制器 25
第四章 電腦模擬一 32
4.1 連續系統 32
4.1.1 系統模型 32
4.1.2 求解 34
4.2 離散系統 40
4.2.1 系統模型 40
4.2.2 求解 43
第二部份:波雅定理之代數應用 50
第五章 模糊閉迴路系統之充要條件 50
5.1 波雅定理(P′olya’sTheorem) 50
5.2 矩陣波雅定理(Matrix-valued P′olya's Theorem) 52
5.3 範例及寬鬆性 56
第六章 電腦模擬二 58
6.1 解空間 58
6.2 倒單擺系統 63
6.2.1 系統描述 63
6.2.2 求解 63
第三部份:具鬆弛矩陣變數之寬鬆環境 68
第七章 波雅定理之寬鬆環境 69
7.1 鬆弛矩陣變數 69
7.2 範例 76
第八章 電腦模擬三 82
8.1 解空間比較 82
8.1.1 連續系統 82
8.1.2 離散系統 86
8.2 耗時比較 90
第九章 結論與未來研究方向 91
9.1 總結 91
9.2 未來研究方向 92
參考文獻 94
參考文獻 [1] K.Tanaka, T.Ikeda, and H.Wang, “Fuzzy regulators and fuzzy observers:relaxed stability conditions and LMI-based designs,” IEEE Trans.Fuzzy Systems, vol. 6, no.2,pp.250–265,May 1998.
[2] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523–534, Oct.2000.
[3] X.Liu and Q.Zhang, “New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, pp. 1571–1582, 2003.
[4] C.-H. Fang, Y.-S. Liu, S.-W. Kau, L. Hong, and C.-S. Lee, “A new LMI-based approach to relaxed quadratic stabilzation of T-s fuzzy control systems,” IEEE Trans.Fuzzy Systems, vol. 14, no. 3, pp. 386–397, 2006.
[5] A. Sala and C. Ari˜no, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem,” Fuzzy Sets and Systems,2007,doi:10.1016/j,fss.2007.06.016.
[6] J.Willems, “Dissipative dynamical systems-Part1:General theory,” Arch.Ratio-nalMech.Analy., vol. 45, pp. 321–351, 1972.
[7] ——, “Dissipative dynamical systems-Part2: Linear systems with quadratic supply rates,” Arch.Rational Mech.Analy., vol. 45, pp. 352–393, 1972.
[8] D. Hill and P. Moylan, “The stability of nonlinear dissipative systems,” IEEE Trans.Automatic Control, vol. 21, pp. 708–711, 1976.
[9] ——, “Dissipative dynamical systems: Basic input-output and state properties,”
J.franklin Inst., vol. 309, pp. 327–357, 1980.
[10] L. Xie, “Robust output feedback dissipative control for uncertain nonlinear systems,” in Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on, vol.1,Hangzhou,China,Jun.2004,pp.809–813.
[11] S.Yuliar and M.James, “General dissipative output feedback control for nonlinear systems,” in Proceedings of the 34th IEEE Conference on Decision and Control, vol.3,New Orleans,LA,Dec.1995,pp.2221–2226.
[12] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. SIAM.
[13] P.Gahinet, A.Nemirovskii, A.Laub, and M.Chilali, “The LMI control toolbox,” in Proceedings of the 33rd IEEE Conferenceon Decision and Control, LakeBuena Vista,FL,USA,Dec.1994,pp.2038–2041.
[14] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. Philadelphia, PA: SIAM, 1994.
[15] S. Yuliar and M. James, “Stabilization of linear systems with sector bounded nonlinearities at the input and output,” in Proc. of the 36th Conf. on Deci. & Contr., vol. 3, Kobe, JP, Dec. 1996, pp. 4759–4764.
[16] S. Gupta, “ Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts,” NASAContractorReport4713,1996.
[17] V. Chellaboina, W. Haddad, and A. Kamath, “A dissipative dynamical systems approach to stability analysis of time delay systems,” in American Control Conference, 2003. Proceedings of the 2003, vol. 1, Denver,Colorado, Jun. 2003, pp. 363–368.
[18] L.Xie, “Robust Dissipative Control for Uncertain Descriptor Linear Systems with TimeDelay,”in The Sixth World Congresson Intelligent Control and Automation, vol.1,Dalian,China,Jun.2006,pp.2327–2333.
[19] S. Xie, L. Xie, and C. de Souza, “Robust dissipative control for linear systems with dissipative uncertainty,” Int.J.Contr., vol. 70, no. 2, pp. 169–191, 1998.
[20] Z. Tan, Y. Soh, and L.Xie, “Dissipative control for linear discrete-time systems,” Automatica, vol. 35, pp. 1557–1564, 1999.
[21] S. Yuliar, M. James, and J. Helton, “Dissipative Control Systems Synthesis with Full State Feedback,” Mathematics of Control, Signals, and Systems,vol.11,no.4, 1998.
[22] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modelling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp. 116–132,Jan.1985.
[23] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality Approach. New York, NY: John Wiley & Sons, Inc., 2001.
[24] H. Uang, “On the dissipativity of nonlinear systems: fuzzy control approach,” Fuzzy Sets and Systems, vol. 156, pp. 185–207, 2005.
[25] J. Lo and J. Wan, “Dissipative control to fuzzy systems with nonlinearity at the input,” in The 2007 CACS International Automatic Control Conference, Taichung,Tw,Nov.2007,pp.329–334.
[26] J. Lo and D. Wu, “Dissipative filtering for nonlinear fuzzy systems,” in The2007 CACSInternationalAutomaticControlConference,Taichung,Tw,Nov.2007,pp. 623–627.
[27] Y.Li,Y.fu,and G.Duan, “Robust dissipative control for T-S fuzzy systems with time-delays,” in IEEE ISIE,Montreal,Ca,Jul.2006,pp.97–101.
[28] T. Hu, Z. Lin, and B. Chen, “An anlysis and design method for linear systems subject toactuatorsaturationanddisturbance,” Automatica,vol.38,pp.351–359, 2002.
[29] ——, “ Analysis and design for discrete-time linear systems subject to actuator saturation,” Syst. & Contr. Lett., vol. 45, pp. 97–112, 2002.
[30] C. Pittet, S. Tarbouriech, and C. Burgat, “Stability regions for linear systems with saturating controls via circle and Popov criteria,” in Proc. of the 36th IEEE Conf. on Decision & Control,SanDiego,CA.,Dec.1997,pp.4518–4521.
[31] J. da Silva and S. Jr. Tarbouriech, “ Antiwindup design with guaranteed regions of stability: an LMI-based approach,” IEEE Trans. Automatic Control, vol. 50, pp.106–111,2005.
[32] Y. Cao, Z. Lin, and B. Chen, “An output feedback H∞controller design for linear systems subject to sensor nonlinearities,” IEEE Trans. Circuits and Syst.
I: Fundamental Theory and Applications, vol. 50, no. 7, pp. 914–921, Jul. 2003.
[33] S. Lee, E. Kim, H. Kim, and M. Park, “Robust Analysis and Design for Discrete-Time Nonlinear Systems Subject to Actuator Saturation via Fuzzy Control,” IE-ICE Transactions on Fundamentals of Electronics, vol. E88VA, 2005.
[34] Y. Cao and Z. Lin, “Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation,” IEEE Trans. Fuzzy Systems, vol. 11, no. 1, pp. 57–67, Feb. 2003.
[35] J. Lo and M. Lin, “Feedback control via Popov for Fuzzy Systems with input saturations,” in Proc. the 13th IEEE Conf. Fuzzy Systems, Budapest, Hu, Jul. 2004,pp.1221–1226.
[36] J. Lo and E. Chen, “State feedback control via circle criterion for uncertain fuzzy systems,” in Proc.2004Conf.Auto.Contr., vol. 1, Taipei, TW, Mar. 2004.
[37] G.Feng, “A survey on analysis and design of model-based fuzzy control systems.” IEEE Trans. Fuzzy Systems, vol. 14, no. 5, pp. 676–697, Oct. 2006.
[38] A. Sala, T. Guerra, and R. Babuska, “Perspectives of fuzzy systems and control,” Fuzzy Sets and Systems, vol. 156, pp. 432–444, Jun. 2005.
[39] T. Guerra and L. Vermeiren, “LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form,” Automatica, vol. 40, pp.823–829,2004.
[40] S. Zhou, G. Feng, J. Lam, and S. Xu, “Robust H∞ control for discrete-time fuzzy systems via basis-dependent Lyapunov functions,” InformationSciences,vol.174, pp.197–217,2004.
[41] S. Zhou, J. Lam, and W. Zheng, “Control Design for Fuzzy Systems Based on Relaxed Nonquadratic Stability and H∞ Performance Conditions,” IEEE Trans. Fuzzy Systems, vol. 15, pp. 188–199, 2007.
[42] K. Tanaka, T. Hori, and H. Wang, “A multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems,” IEEE Trans. Fuzzy Systems, vol. 11, no.4,pp.582–589,Aug.2003.
[43] K. Tanaka, H. Ohtake, and H. Wang, “A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions,” IEEE Trans. Fuzzy Systems, vol. 15, pp. 333–341, Jun. 2007.
[44] M. de Oliveira, J. Geromel, and J. Bernussou, “Extended H2and H∞norm characterizations and controller parameterizations for discrete-time systems,” Int.J. Contr., vol. 75, no. 9, pp. 666–679, 2002.
[45] S.-W.Kau, H.-J.Lee, C.-M.Yang, C.-H.Lee, L.Honga, andC.-H.Fang, “Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties,” Fuzzy Sets and Systems, vol. 158, pp. 135–146, 2007.
[46] M.Teixeira, E.Assuncao, and R.Avellar, “On relaxed LMI-based design for fuzzy regulators and fuzzy observers,” IEEE Trans. Fuzzy Systems, vol. 11, no. 5, pp. 613–623,2003.
[47] B.Ding,H.Sun,andP.Yang, “Further studies onLMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno’s form,” Automatica, vol. 42, pp.503–508,2006.
[48] D. Ramos and P. Peres, “An LMI condition for the robust stability of uncertain continuous-time linear systems,” IEEE Trans. Automatic Control, vol. 47, no. 4, pp.675–678,Apr.2002.
[49] M.deOliveira and J.Geromel, “A class of robust stability conditions where linear parameter dependence of the Lyapunov function is a necessary condition for arbitrary parameter dependencestar,” Syst. & Contr. Lett., vol. 54, pp. 1131–1134, Nov.2005.
[50] R. Oliveira and P. Peres, “LMI conditions for the existence of polynomially parameter-dependent Lyapunov functions assuring robust stability,” in Proc. of 44th IEEE Conf. on Deci and Contr, Seville,Spain,Dec.2005,pp.1660–1665.
[51] R.C.Oliveira and P.L.Peres, “LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions,” Syst. & Contr. Lett., vol.55,pp.52–61,Jan.2006.
[52] M.deOliveira,J.Bernussou,andJ.Geromel,“A new discrete-time robust stability condition,” Syst. & Contr. Lett., vol. 37, pp. 261–265, 1999.
[53] J. Daafouz and J. Bernussou, “Parameter dependent Lyapunov functions for dis-crete time systems with time varying parametric uncertainties,” Syst. & Contr. Lett., vol. 43, pp. 355–359, Aug. 2001.
[54] C. Arino and A. Sala, “Design of Multiple-Parameterisation PDC Controllers via Relaxed Conditions for Multi-Dimensional Fuzzy Summations,” in IEEE International Conference on Fuzzy Systems,London,UK,July 2007,pp.1–6.
[55] G. Hardy, J. Littlewood, and G. P′olya, Inequalities, second edition. Cambridge, UK.:Cambridge University Press,1952.
[56] V.Power and B.Reznick, “A new bound for P′olya’s Theorem with applications to polynominals positiveon polyhedra,”J.Pure Appl. Algebra,vol.164,pp.221–229, 2001.
[57] J. de Loera and F. Santos, “An effective version of Polya’s theorem on positive definiteforms,” Journal of Pure and Applied Algebra,vol.108,pp.231–240,1996.
[58] C. Scherer, “Higher-order relaxations for robust LMI problems with verifications for exactness,” in Proc. of 42th IEEE Conf. on Deci and Contr, Maui,Hawaii, USA,Dec.2003,pp.4652–4657.
[59] ——, “Relaxations for robust linear matrix inequality problems with verifications for exactness,” SIAM Journal on Matrix Analysis and Applications, vol. 27, pp. 365–395,2005.
[60] R.Oliveira and P.Peres, “Stability of polytopes of matrices via affine parameter-dependent Lyapunov functions: Asymptotically exact LMI conditions,” Linear Algebra and its Applications, vol. 405, pp. 209–228, 2005.
[61] V. Montagner, R. Oliveira, P. Peres, and P.-A. Bliman, “Linear matrix inequality characterisation for H∞ and H2guaranteed cost gain-scheduling quadratic stabilisation of linear time-varying polytopic systems,” IET Control Theory and Applications, vol. 1, pp. 1726–1735, 2007.
[62] R.Oliveira and P.Peres, “Parameter-dependent LMIs in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations,” IEEE Trans. Automatic Control, vol. 52, no. 7, pp. 1334–1340, Jul. 2007.
[63] V.F.Montagner, R.C.L.F. Oliveira, and P.L.D.Peres,“Necessary and sufficient LMI conditions to compute quadratically stabilizing state feedback controllers for Takagi-Sugeno systems,” in American Control Conference, 2007. ACC ’07,New YorkCity,USA,2007,pp.4059–4064.
[64] H. K. Khalil, Nonlinear Systems. New York, NY.: Macmillian Publishing Co., 1992.
[65] P.Gahinet, A.Nemirovskii, A.Laub, and M.Chilali, “LMI control Toolbox User’s Guide,” in TheMathWorksInc., Natick,MA.
[66] B.Ding,H.Sun,andP.Yang, “Further studies onLMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno’s form,” Automatica, vol. 43, pp.503–508,2006.
[67] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via LMI optimization,” IEEE Trans. Automatic Control, vol. 42, no. 7, pp. 896– 911,Jul.1997.
[68] V.Montagner, P.Peres, S.Tarbouriech, and I.Que innec, “Improved Estimation of Stability Regions for Uncertain Linear Systems with Saturating Actuators: an LMI-based Approach,” in Decision and Control, 2006 45th IEEE Conference on, 2006,SanDiego,CA,USA,Dec.2006,pp.5429–5434.
[69] J.LoandM.Lin, “Robust H∞ nonlinear control via fuzzy static output feedback,” IEEE Trans. Circuits and Syst. I: Fundamental Theory and Applications, vol. 50, no.11,pp.1494–1502,Nov.2003.
[70] K. R. GV Reklaitis, ARavindran, Engineering Optimization: Methods and Applications 2th. Cambridge, UK.: Wiley, 2006.
指導教授 羅吉昌(Ji-chang Lo) 審核日期 2008-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明