參考文獻 |
[1] S. Xie, L. Xie, and C. de Souza, “Robust dissipative control for linear systems
with dissipative uncertainty,” Int. J. Contr., vol. 70, no. 2, pp. 169–191, 1998.
[2] J. Willems, “Dissipative dynamical systems-Part 1: General theory,” Arch. Rational
Mech. Analy., vol. 45, pp. 321–351, 1972.
[3] ——, “Dissipative dynamical systems-Part 2: Linear systems with quadratic supply
rates,” Arch. Rational Mech. Analy., vol. 45, pp. 352–393, 1972.
[4] D. Hill and P. Moylan, “The stability of nonlinear dissipative systems,” IEEE
Trans. Automatic Control, vol. 21, pp. 708–711, 1976.
[5] ——, “Dissipative dynamical systems: Basic input-output and state properties,”
J. franklin Inst., vol. 309, pp. 327–357, 1980.
[6] L. Xie, “Robust output feedback dissipative control for uncertain nonlinear systems,”
in Intelligent Control and Automation, 2004. WCICA 2004. Fifth World
Congress on, vol. 1, Hangzhou, China, June 2004, pp. 809–813.
[7] S. Yuliar and M. James, “General dissipative output feedback control for nonlinear
systems,” in Decision and Control, 1995., Proceedings of the 34th IEEE
Conference on, vol. 3, New Orleans, LA, Dec. 1995, pp. 2221–2226.
[8] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities
in System and Control Theory. SIAM.
[9] P. Gahinet, A. Nemirovskii, A. Laub, and M. Chilali, “The LMI control toolbox,”
in Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on, Lake
Buena Vista, FL, USA, Dec. 1994, pp. 2038–2041.
[10] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex
Programming: Theory and Algorithms. Philadelphia, PA: SIAM, 1994.
[11] S. Yuliar and M. James, “Stabilization of linear systems with sector bounded
nonlinearities at the input and output,” in Proc. of the 36th Conf. on Deci. &
Contr., vol. 3, Kobe, JP, Dec. 1996, pp. 4759–4764.
[12] S. Gupta, “ Robust Stabilization of Uncertain Systems Based on Energy Dissipation
Concepts,” NASA Contractor Report 4713, 1996.
[13] V. Chellaboina, W. Haddad, and A. Kamath, “A dissipative dynamical systems
approach to stability analysis of time delay systems,” in American Control Conference,
2003. Proceedings of the 2003, vol. 1, Denver,Colorado, June 2003, pp.
363–368.
[14] L. Xie, “Robust Dissipative Control for Uncertain Descriptor Linear Systems with
Time Delay,” in Intelligent Control and Automation, 2006. WCICA 2006. The
Sixth World Congress on, vol. 1, Dalian, China, June 2006, pp. 2327–2333.
[15] Z. Tan, Y. Soh, and L.Xie, “Dissipative control for linear discrete-time systems,”
Automatica, vol. 35, pp. 1557–1564, 1999.
[16] S. Yuliar, M. James, and J. Helton, “Dissipative Control Systems Synthesis with
Full State Feedback,” Mathematics of Control, Signals, and Systems, 1998.
[17] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications
to modelling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp.
116–132, Jan. 1985.
[18] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality
Approach. New York, NY: John Wiley & Sons, Inc., 2001.
[19] H. Uang, “On the dissipativity of nonlinear systems: fuzzy control approach,”
Fuzzy Set and Systems, vol. 156, pp. 185–207, 2005.
[20] J. Lo and J. Wan, “Dissipative control to fuzzy systems with nonlinearity at
the input,” in The 2007 CACS International Automatic Control Conference,
Taichung,Tw, Nov. 2007, pp. 329–334.
[21] J. Lo and D. Wu, “Dissipative filtering for nonlinear fuzzy systems,” in The 2007
CACS International Automatic Control Conference, Taichung,Tw, Nov. 2007, pp.
623–627.
[22] Y. Li, Y. fu, and G. Duan, “Robust dissipative control for T-S fuzzy systems with
time-delays,” in IEEE ISIE, Montreal, Ca, July 2006, pp. 97–101.
[23] L. CAO and S. H. M., “Output feedback stabilization of linear systems with a
singular perturbation model,” 2002, pp. 1627–1632.
[24] J. Dong and G.-H. Yang, “H1 control for fast sampling discrete-time singularly
perturbed systems,” Automatica, vol. 44, pp. 1385–1393, Feb. 2008.
[25] Z. Ning-fan, S. Min-hui, and ZOU-Yun., “H1 control for singularly perturbed
system: a method based on sigular system cotroller design,” in IET Control Theory
Appl., vol. 24, no. 5, 2007, pp. 701–706.
[26] S. Pang, H.-W. Wang, and G.-M. Lu., “Robust Control of Singularly Perturbed
Systems and Simulations,” in IET Control Theory Appl., vol. 24, no. 4, 2005, pp.
19–22.
[27] H. Liu, F. Sun, and Z. Sun, “Stability analysis and synthesis of fuzzy singularly
perturbed systems,” IEEE Trans. Fuzzy Systems, vol. 13, no. 2, pp. 273–284, Apr.
2005.
[28] E. Fridman, “State feedback H1 control of nonlinear singularly perturbed systems,”
Int’l J. of Robust and Nonlinear Control, vol. 11, pp. 1115–1125, 2001.
[29] H. Liu, F. Sun, and Y. Hu, “H1 control for fuzzy singularly perturbed systems,”
Fuzzy Set and Systems, vol. 155, pp. 272–291, 2005.
[30] W. Assawinchaichote and S. Nguang, “H1 fuzzy control design for nonlinear singularly
perturbed systems with pole placement constraints: an LMI approach,”
IEEE Trans. Syst., Man, Cybern. B: Cybernetics, vol. 34, no. 1, pp. 579–588, Feb.
2004.
[31] ——, “H1 filtering for fuzzy singularly perturbed systems with pole placement
constraints: an LMI approach,” IEEE Trans. Signal Processing, vol. 52, no. 6, pp.
1659–1667, June 2004.
[32] G. Feng, “A survey on analysis and design of model-based fuzzy control systems.”
IEEE Trans. Fuzzy Systems, vol. 14, no. 5, pp. 676–697, Oct. 2006.
[33] A. Sala, T. Guerra, and R. Babuska, “Perspectives of fuzzy systems and control,”
Fuzzy Set and Systems, vol. 156, pp. 432–444, June 2005.
[34] K. Tanaka, T. Ikeda, and H.Wang, “Fuzzy regulators and fuzzy observers: relaxed
stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6,
no. 2, pp. 250–265, May 1998.
[35] T. Guerra and L. Vermeiren, “LMI-based relaxed nonquadratic stabilization conditions
for nonlinear systems in the Takagi-Sugeno’s form,” Automatica, vol. 40,
pp. 823–829, 2004.
[36] S. Zhou, G. Feng, J. Lam, and S. Xu, “Robust H1 control for discrete-time fuzzy
systems via basis-dependent Lyapunov functions,” Information Sciences, vol. 174,
pp. 197–217, 2004.
[37] S. Zhou, J. Lam, and W. Zheng, “Control Design for Fuzzy Systems Based on
Relaxed Nonquadratic Stability and H1 Performance Conditions,” IEEE Trans.
Fuzzy Systems, vol. 15, pp. 188–199, 2007.
[38] K. Tanaka, T. Hori, and H. Wang, “A multiple Lyapunov Function Approach
to Stabilization of Fuzzy Control Systems,” IEEE Trans. Fuzzy Systems, vol. 11,
no. 4, pp. 582–589, Aug. 2003.
[39] K. Tanaka, H. Ohtake, and H. Wang, “A Descriptor System Approach to Fuzzy
Control System Design via Fuzzy Lyapunov Functions,” IEEE Trans. Fuzzy Systems,
vol. 15, pp. 333–341, June 2007.
[40] M. de Oliveira, J. Geromel, and J. Bernussou, “Extended H2 and H1 norm characterizations
and controller parameterizations for discrete-time systems,” Int. J.
Contr., vol. 75, no. 9, pp. 666–679, 2002.
[41] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of
fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523–534,
Oct. 2000.
[42] M. Teixeira, E. Assuncao, and R. Avellar, “On relaxed LMI-based design for fuzzy
regulators and fuzzy observers,” IEEE Trans. Fuzzy Systems, vol. 11, no. 5, pp.
613–623, 2003
[43] C.-H. Fang, Y.-S. Liu, S.-W. Kau, L. Hong, and C.-S. Lee, “A new LMI-based
approach to relaxed quadratic stabilzation of T-s fuzzy control systems,” IEEE
Trans. Fuzzy Systems, vol. 14, no. 3, pp. 386–397, 2006.
[44] X. Liu and Q. Zhang, “New approaches to H1 controller designs based on fuzzy
observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, pp. 1571–1582,
2003.
[45] S.-W. Kau, H.-J. Lee, C.-M. Yang, C.-H. Lee, L. Honga, and C.-H. Fang, “Robust
H1 fuzzy static output feedback control of T-S fuzzy systems with parametric
uncertainties,” Fuzzy Set and Systems, vol. 158, pp. 135–146, 2007.
[46] B. Ding, H. Sun, and P. Yang, “Further studies on LMI-based relaxed stabilization
conditions for nonlinear systems in Takagi-Sugeno’s form,” Automatica, vol. 43,
pp. 503–508, 2006.
[47] D. Ramos and P. Peres, “An LMI condition for the robust stability of uncertain
continuous-time linear systems,” IEEE Trans. Automatic Control, vol. 47, no. 4,
pp. 675–678, Apr. 2002.
[48] M. de Oliveira and J. Geromel, “A class of robust stability conditions where linear
parameter dependence of the Lyapunov function is a necessary condition for arbitrary
parameter dependencestar,” Syst. & Contr. Lett., vol. 54, pp. 1131–1134,
Nov. 2005.
[49] R. Oliveira and P. Peres, “LMI conditions for the existence of polynomially
parameter-dependent Lyapunov functions assuring robust stability,” in Proc. of
44th IEEE Conf. on Deci and Contr, Seville, Spain, Dec. 2005, pp. 1660–1665.
[50] R. C. Oliveira and P. L. Peres, “LMI conditions for robust stability analysis based
on polynomially parameter-dependent Lyapunov functions,” Syst. & Contr. Lett.,
vol. 55, pp. 52–61, Jan. 2006.
[51] M. de Oliveira, J. Bernussou, and J. Geromel, “A new discrete-time robust stability
condition,” Syst. & Contr. Lett., vol. 37, pp. 261–265, 1999.
[52] J. Daafouz and J. Bernussou, “Parameter dependent Lyapunov functions for discrete
time systems with time varying parametric uncertainties,” Syst. & Contr.
Lett., vol. 43, pp. 355–359, Aug. 2001.
[53] C. Arino and A. Sala, “Design of multiple-parameterisation PDC controllers via
relaxed conditions for multi-dimensional fuzzy summations,” in Fuzzy Systems
Conference, 2007. FUZZ-IEEE 2007. IEEE International, 2007, pp. 1–6.
[54] G. Hardy, J. Littlewood, and G. P´olya, Inequalities, second edition. Cambridge,
UK.: Cambridge University Press, 1952.
[55] V. Power and B. Reznick, “A new bound for P´olya’s Theorem with applications to
polynominals positive on polyhedra,” J. Pure Appl. Algebra, vol. 164, pp. 221–229,
2001.
[56] J. de Loera and F. Santos, “An effective version of Polya’s theorem on positive
definite forms,” Journal of Pure and Applied Algebra, vol. 108, pp. 231–240, 1996.
[57] C. Scherer, “Higher-order relaxations for robust LMI problems with verifications
for exactness,” in Decision and Control, 2003. Proceedings, Maui,Hawaii, USA,
Dec. 2003, pp. 4652–4657.
[58] ——, “Relaxations for robust linear matrix inequality problems with verifications
for exactness,” SIAM Journal on Matrix Analysis and Applications, vol. 27, pp.
365–395, 2005.
[59] A. Sala and C. Ari˜no, “Asymptotically necessary and sufficient conditions for
stability and performance in fuzzy control: Applications of Polya’s theorem,”
Fuzzy Set and Systems, 2007, doi:10.1016/j,fss.2007.06.016.
[60] R. Oliveira and P. Peres, “Stability of polytopes of matrices via affine parameterdependent
Lyapunov functions: Asymptotically exact LMI conditions,” Linear
Algebra and its Applications, vol. 405, pp. 209–228, 2005.
[61] V. Montagner, R. Oliveira, P. Peres, and P.-A. Bliman, “Linear matrix inequality
characterisation for H1 and H2 guaranteed cost gain-scheduling quadratic stabilisation
of linear time-varying polytopic systems,” Control Theory and Applications,
IET, vol. 1, pp. 1726–1735, 2007.
[62] R. Oliveira and P. Peres, “Parameter-dependent LMIs in robust analysis: Characterization
of homogeneous polynomially parameter-dependent solutions via LMI
relaxatiions,” IEEE Trans. Automatic Control, vol. 52, no. 7, pp. 1334–1340, July
2007
[63] V. F. Montagner, R. C. L. F. Oliveira, and P. L. D. Peres, “ Necessary and sufficient
LMI conditions to compute quadratically stabilizing state feedback controllers for
Takagi-Sugeno systems,” in American Control Conference, 2007. ACC ’07, New
York City, USA, 2007, pp. 4059–4064.
[64] W. Assawinchaichote, S. Nguang, and P. Shi, “H1 output feedback control design
for uncertain fuzzy singularly perturbed systems: an LMI approach,” Automatica,
vol. 40, pp. 2147– 2152, Sept. 2004.
[65] C. Scherer, “Relaxations for robust linear matrix inequality problems with verification
for exactness,” SIAM J. Matrix Anal.Appl., vol. 27, no. 2, pp. 365–395,
2005.
[66] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control
via LMI optimization,” IEEE Trans. Automatic Control, vol. 42, no. 7, pp. 896–
911, July 1997.
[67] J. Lo and M. Lin, “Robust H1 nonlinear control via fuzzy static output feedback,”
IEEE Trans. Circuits and Syst. I: Fundamental Theory and Applications, vol. 50,
no. 11, pp. 1494–1502, Nov. 2003 |