博碩士論文 963203014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.148.108.192
姓名 杜瑋珊(Wei-Shan Tu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 共振頻率法之牙科植體個體骨缺損檢測研究
(Resonance frequency assessment ofdental implant detecting defect)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前植牙技術已廣泛運用至牙科手術上,因此術後成功與否為研究關切的問
題。本研究利用共振頻率法進行植體/齒槽骨結構缺損程度、方位檢測,並利用
有限元素法進行模態分析,相互比較驗證。
第一階段實驗針對植體/齒槽骨結構進行方位缺損檢測,藉由植體植入不同
骨缺損模型後量測各方位共振頻率,判斷齒槽骨缺損方向,並由植體/齒槽骨缺
損結構所呈現之頻率變化,評估植體與周圍骨組織整合的程度,同時由數值模擬
進行模態分析,相互比較驗證。第二階段實驗改變齒槽骨前後夾持高度模擬個體
之間差異,作為缺損程度檢測依據,因此後續建立骨缺損程度診斷機制,歸納此
檢測機制並進行模擬驗證,將此結果提供於臨床植牙手術,作為術後參考依據。
歸納共振頻率變化趨勢與骨缺損程度及方位之關係,針對個體骨缺損情況建
立有效的骨缺損位置檢測技術,期能改善臨床常用X 光二維影像判讀之不足、
僅以結構共振頻率呈現整體現象之缺點,進而協助醫生監測病患局部骨缺損及過
續補強,以提高植牙手術的成功率。
摘要(英) The dental implant is generally used in patients who are edentulous and missing
natural tooth. This study is based on the resonant frequency response to specify criteria
for examining the defect direction and defect severity in the bone of dental implant. Both
the finite element analysis and the experimental modal analysis are applied to compare
the differences between experiment and simulation.
In the first stage, resonance frequency analysis (RFA) was applied to estimate
stability of bone-implant structure in full size. The variation of RF was used to locate
the direction of bone that was non-ossestintegration. The resonance frequency (RF)
increased substantially as better stability of bone-implant structure was achieved. In
the second stage, The boundary condition was varied to simulate different mandible.
The RF with different boundary was used to decide defect type. Then, we collated
those data and defined a criterion to detect the defect bone depth with dental implant.
The three detection steps include that using the severe RF to decide the mandible
type, locating the direction of defect bone, and deciding the defect type. In the end, we
prove that RFA was effective method for examining the defect direction and defect
severity in the bone of dental implant.
關鍵字(中) ★ 共振頻率法
★ 缺損方位檢測
★ 有限元素法
關鍵字(英) ★ Dental Implant
★ Bone defect
★ Resonant Frequency Analysis
★ Finite Element Analysis
論文目次 摘要........................................................................................................................... I
Abstract.................................................................................................................... II
誌謝........................................................................................................................... III
目錄........................................................................................................................... IV
圖目錄....................................................................................................................... VI
表目錄....................................................................................................................... IX
第一章 緒論............................................................................................................. 1
1.1 研究動機........................................................................................................ 1
1.2 文獻回顧......................................................................................................... 2
1.3 研究範疇........................................................................................................ 7
第二章 結構振動理論基礎..................................................................................... 9
2.1 懸臂樑振動分析............................................................................................. 9
2.2 有限元素分析................................................................................................. 12
第三章 骨缺損模型之檢測實驗與模擬分析........................................................ 15
3.1 原尺寸骨缺損模型設計................................................................................. 16
3.1.1 模型設計與製作.................................................................................. 16
3.1.2 個體差異性設計.................................................................................. 19
3.2 缺損檢測實驗設備與架構........................................................................... 20
3.2.1 衝擊力激振與位移響應實驗............................................................. 20
3.2.2 聲能激振與位移響應實驗................................................................. 22
3.3 數值模擬....................................................................................................... 24
3.3.1 分析模型.............................................................................................. 25
3.3.2 邊界條件設立及求解.......................................................................... 27
3.3.3 收斂性分析.......................................................................................... 28
V
第四章 結果與討論................................................................................................. 32
4.1 骨缺損程度及方位判別方法....................................................................... 32
4.1.1 衝擊力激振與聲能激振實驗結果...................................................... 32
4.1.2 實驗與數值分析................................................................................. 35
4.2 不同邊界條件之骨缺損實驗與數值分析.................................................... 46
4.3 討論................................................................................................................ 53
4.3.1 缺損型態討論...................................................................................... 53
4.3.2 個體差異性討論.................................................................................. 54
第五章 結論與未來展望......................................................................................... 57
參考文獻................................................................................................................... 58
參考文獻 Adell, R., Lekholm, U., Rockler, B. and Branemark, P. I., “A 15 Years Study of
Osseointegrated Implants in the Treatment of the Edentulous Jaw,” International
Journal of Oral and Maxillofacial Surgery, Vol. 10, No. 6, pp. 137-416 (1981).
Adell, R., Eriksson, B., Lekholm, U., Branemark, P. I., “Jemt T. Long-term follow-up
study of osseointegrated implants in the treatment of totally edentulous jaws,”
International Journal of Oral and Maxillofacial Surgery,.Vol. 5, No. 4, pp.
347-359 (1990).
Attard, N. J., Zarb, G. A., “Implant prosthodontic management of partially edentulous
patients missing posterior teeth: the Toronto experience, ” J Prosthet Dent, Vol. 89,
No. 4, pp. 352-359 (2003).
Albrektsson, T. and Albrektsson, B., “Osseointehration of Bone Implants: a Review of
an Alterative Mode of Fixation,” Acta Orthopaedica Scandinavica, Vol. 58, pp.
567-577 (1987).
Bossy, E., Talmant, M. and Laugier, P., “ Three-Dimensional Simulation of Ultrasonic
Axial Transmission Velocity Measurement on Cortical Bone Models,” Acoustical
Society of America, Vol.115, No. 5, pp.2314-2324 (2004).
Doebling, S., Farrer, C., Prime, M., Shevitz, D.,(1999).Damage Identification and
Health Monitoring of Structural and Mechanical System form Changes in Their
Vibration Characteristics: A Literature Review, Los Alamos National Laboratory,
California.
Elias, J., Brunski, J. B. and Scarton, H. A., “A Dynamic Model Testing Technique for
Noninvasive Assessment of Bone-Dental Implant Interface,” International
Journal of Oral and Maxillofacial Implants, Vol. 11, No. 6, pp. 728-734 (1996).
Huang, H. M., Pan, L. C., Lee, S. Y., Chiu, C. L., Fan, K. H. and Ho, K. N.,
“Assessing the Implant-Bone Interface by Using Natural Frequency Analysis,”
Clinical Oral Implants Research, Vol. 90, No. 3, pp. 285-291 (2000).
Huang, H. M., Yeh, C. Y., Pan, S. Y. and Lee, S. Y., “Factors Influencing the Dynamic
Behavior of Human Teeth,” Medical & Biological Engineering & Computing, Vol.
39, No. 2, pp. 176-181 (2001).
Huang, H. M., Lee, S. Y., Yeh, C. Y., Lin, C. T., “Resonance frequency assessment of
dental implant stability with various bone qualities: a numerical approach,” Clin.
Oral Impl. Re,. Vol. 13, No. 2, pp. 65–74 (2002).
59
Huang, H. M., Chiu, C. L., Yeh, C. Y., Lin, C. T., Lin, L. H., Lee, S. Y., “Early
detection of implant healing process using resonance frequency analysis, ” Clin.
Oral Impl. Re,. Vol. 14, No. 5, pp. 437–443 (2003).
Ito Y., Sato, D., Yoneda, S., Ito, D., Kondo, H., Kasugai, S., “ Relevance of
Resonance frequency analysis to evaluate dental implant stability: simulation and
histomorphometrical animal experiments., ”Clin. Oral Impl, Res, Vol. 19 No,1 pp
9–14(2008).
Jaecques, S., Pastrav, C., Zahariuc, A. and Van der Perre, G., “ Analysis of the Fixation
Quality of Cementless Hip Prostheses Using a Vibrational Technique,”
Proceedings of ISMA, pp.443-456 (2004).
Kitamura, E., Stegaroiu, R., Nomura, S. and Miyakawa, O., “Influence of Marginal
Bone Resorption on Stress around an Implant: a 3-Dimensional Finite Element
Analysis, ” Journal of Oral Rehabilitation, Vo1. 32, No, 1, pp.279-286 (2005).
Kitamura, E., Stegaroiu, R., Nomura, S. and Miyakawa, O., “Influence of Marginal
Bone Resorption on Stress around an Implant: a 3-Dimensional Finite Element
Analysis, ” Journal of Oral Rehabilitation, Vo1. 32, No, 1, pp.279-286 (2005).
Kim, J. and Stubbs, N., “ Crack Detection in Beam-Type Structures Using Frequency
Data,” Journal of Sound and Vibration, Vol. 259, No.1, pp.145-160 (2003).
Lee, J., Kim, Y. S., Kim C. W., Han J. S.,“Wave analysis of implant screw loosening
using an air cylindrical cyclic loading device,” The Journal of Prosthetic Dentistry,
Vol 88, No 4, pp.402-408 (2002).
Lee, S. Y., Huang, H. M., Lin, C. Y. and Shih, Y. H., “In vivo and in vitro Natural
Frequency Analysis of Periodontal Conditions, an Innovative Method,” Journal of
Periodontal Research, Vol. 71, No. 4, pp. 632-640 (1999).
Lukas, C., Antonin S., Radovan S., Ladislav D., “Influence of the Orientation of the
Osstell Transducer During Measurement of Dental Implant Stability Using
Resonance Frequency Analysis: A Numerical Approach,” Medical Engineering &
Physics, (2009).
Meredith, N., “Assessment of implant stability as a prognostic determinant,” Internal
Journal Prosthodont, Vol.11, No.4, pp:491–501 (1998).
Meredith, N., Alleyne, D. and Cawley, P., “Quantitative Determination of the Stability
of the Implant-Tissue Interface Using Resonance Frequency Analysis,” Clinical
Oral Implants Research, Vol.7, No. 3, pp. 261-267 (1996).
60
Meirovitch, L., Fundamentals of Vibrations, McGraw-Hill, New York (2001).
Natali, A. N., Pavan, P. G., Schileo, E., Williams, K. R., “A Numerical Approach to
Resonance Frequency Analysis for the Investigation of Oral Implant
Osseointegration,” Journal of Oral Rehabilitation Res,.Vol.33, No.9, pp.
674–681(2006).
Oka, H., Yamamoto, T., Saratani, K. and Kawazoe, T., “Application of Mechanical
Mobility of Periodontal Tissues to Tooth Mobility Examination,” Medical &
Biological Engineering & Computing, Vol. 27, No. 1, pp. 75-81 (1989).
Qi, G., Mouchon, W., Tan, T., “How Much Can a Vibrational Diagnostic Tool Reveal
in Total Hip Arthroplasty Loosening, ” Journal of Clinical Biomechanics, Vol. 18,
No. 5, pp.444-458 (2003).
Sullivan, D. Y., Sherwood, R. L., Collins, T. A. and Krogh, P. H. J., “The
Reverse-Torque Test. A Clinical Report,” International Journal of Oral and
Maxillofacial Implants, Vol. 11, No. 2, pp. 179-185 (1996).
Sunden, S., Grondahl, K. and Grondahl, H. G., “Accuracy and Precision in the
Radiographic Diagnosis of Clinical Instability in Brånemark Dental Implants,”
Clinical Oral Implants Research, Vol. 6, No. 4, pp. 220-226 (1995).
Schulte, W., Lukas, D., Maunz, M., Steppeler, M., “Periotest for Messuring
Periodontal Characteristics Correlation with Periodontal Loss,”Journal of
Periodonntal Research, Vol.27, No 3, pp. 184-190 (1992).
Serpe, L. and Rho, J. Y., “The Nonlinear Transition Period of Broadband Ultrasound
Attenuation as Bone Density Varies,” Journal of Biomechanical, Vol. 29, No. 7,
pp. 963-966 (1996).
Singh, R, The Design Fabrication and Characterization of an Ultrasonic Crack
Detection System for Human Teeth, PhD Thesis, University of California Los
Angles, California (2005).
Sjostrom, M., Lundgren, S., Nilson, H., Sennerby L., “Monitoring of Implant Stability
in Grafted Bone Using Resonance Frequency Analysis a Clinical Study from
Implant Placement to 6 Months of Loading, ” Int. J. Oral Maxillofac Surg; Vol.
34, No. 5, pp. 45–51(2005).
Thomson, W. T., Theory of Vibration with Applications, Prentice-Hall, New York, pp.
221-229 (1995).
Williams, K. R. and Williams, A. D. C., “Impulse Response of a Dental Implant in
Bone by Numerical Analysis,” Journal of Biomaterials, Vol. 18, No. 10, pp.
61
715-719 (1997).
Williams, K. R. and Young, F. A., “Calculation of the Natural Frequency of
Vibration of an Orthopedic Screw in Cancellous Bone of Various Orientations
Using the Finite Element Method,” Journal of Mechanics in Medicine and
Biology, Vol. 2, No. 1, pp. 67-79 (2002).
王大介,「利用共振頻率分析法研究植體在類似不同骨密度環境下之穩固度」,碩
士論文,國防醫學院牙醫科學研究所,臺北(2004)。
王重杰,王栢村,「懸臂樑之自由振動有限元素分析」,ANSYS 應用技術通訊,
第一期,第36-43 頁(1995)。
王栢村,振動學,全華科技圖書股份有限公司,臺北(2002)。
王栢村,電腦輔助工程分析之實務與應用,全華科技圖書股份有限公司,臺北
(2005)。
余俊杰,「不同模擬形式與程度的齒槽骨缺損對牙齒動搖度之共振響應分析」,碩
士論文,臺北醫學大學口腔復健醫學研究所,臺北(2001)。
林世芬,「以激振方式分析人工牙根穩固度之相關性研究」,碩士論文,臺北醫學
大學口腔復健醫學研究所,臺北(2002)。
莊瀚伯,「牙科植體術後股缺損型態之結構分析」,碩士論文,國立中央大學機械
工程研究所,桃園(2006)。
陳梓蔚,「共振頻率法於牙根植體缺損位置判別研究」,碩士論文,國立中央大學機
械工程研究所,桃園(2007)。
張柏豪,「應用分佈質量轉移矩陣法於攜帶各種集中元素之Timoshenko 樑的自由
振動」,碩士論文,國立成功大學系統及船舶電工程所,台南(2006)。
鄭光佑,「人工牙根穩固度檢測儀之設計與驗證」,碩士論文,臺北醫學大學口腔
復健醫學研究所,臺北(2002)。
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2009-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明