博碩士論文 963203041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.117.75.53
姓名 陳詠星(Yung-Hsing Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 金屬氫化物氫壓縮機與高壓儲氫合金之研發與應用
(Developments and applications of metal hydride hydrogen compressor with high-pressure hydrogen storage alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為拓展儲氫合金的應用,本研究自行建構一金屬氫化物氫壓縮機系統,此系統設計可進行單階段或二階段氫壓縮測試模式,且可在單階段氫壓縮時連續釋放高壓氫氣,並選用AB5型La0.5Ce0.5Ni5-xAlx (x=0, 0.1, 0.2)與AB2型Ti1-yZryMn0.8Cr1.2 (y= 0.1, 0.2)系列合金,作為單階段氫壓縮機材料。
合金以真空電弧熔煉法熔配,經由X光粉繞射分析、PCI測試、吸放氫動力學測試及Van’t Hoff曲線探討後可知,La0.5Ce0.5Ni5-xAlx系列合金中,由於Ce取代La造成合金晶格體積變小,因此提高合金吸放氫平台壓,但遲滯也跟著變大,而隨著Al取代量增加可略為降低遲滯影響,但也造成吸放氫平台壓下降。而在Ti1-yZryMn0.8Cr1.2合金中,晶格體積隨著Zr含量增加而變大,而大幅降低合金吸放氫平台壓。
由二系列合金中,選La0.5Ce0.5Ni5與Ti0.9Zr0.1Mn0.8Cr1.2合金以單階段氫壓縮機進行測試,可在100℃下分別達到117atm與132atm放氫壓力,並於140℃時,二者皆可達到200atm放氫壓力,而Ti0.9Zr0.1Mn0.8Cr1.2合金於各溫度下放氫壓力較高且放氫動力學較佳,明顯優於La0.5Ce0.5Ni5合金。
摘要(英) In order to expanded applications of hydrogen storage alloys, a metal hydride hydrogen compressor was developed in this work. The compressor operated with two mode, single-stage compression and double-stages compression. In single-stage mode, the compressor could supply high-pressure hydrogen continually. Materials selected was AB5-based La0.5Ce0.5Ni5-xAlx (x=0, 0.1, 0.2) alloys and AB2-based Ti1-yZryMn0.8Cr1.2 (y= 0.1, 0.2) alloys for single-stage compression.
All samples were prepared by arc-melting in argon atmosphere and characterized by XRD, PCI tests, kinetic tests and discussed with Van’t Hoff equations. In La0.5Ce0.5Ni5-xAlx (x=0, 0.1, 0.2) series alloys, the replacement of La by Ce decreased unit cell volume of alloys and resulted in plateau pressure increased. And Ce substitution also increased hysteresis effect. With increased Al contents, both plateau pressure and hysteresis were decreased. In Ti1-yZryMn0.8Cr1.2 (y= 0.1, 0.2) series alloys, Ti was replaced by Zr, and with increased Zr contents, the plateau pressure was decreased. These resulted from the increase of unit cell volume caused by Zr substitution.
From two series alloys, La0.5Ce0.5Ni5 and Ti0.9Zr0.1Mn0.8Cr1.2 were selected for single-stage compressor. In the compression tests, La0.5Ce0.5Ni5 and Ti0.9Zr0.1Mn0.8Cr1.2 could produce 117atm and 132atm hydrogen at 100℃ respectively. And when the temperature was raised to 140℃, both two alloys could produce 200atm hydrogen. In comparison of these two alloys, the compression properties of Ti0.9Zr0.1Mn0.8Cr1.2 were better than La0.5Ce0.5Ni5.
關鍵字(中) ★ 儲氫合金
★ 金屬氫化物氫壓縮機
關鍵字(英) ★ Metal hydride hydrogen compressor
★ Hydrogen storage alloys
論文目次 中文摘要…………………………...………………...........………………i
英文摘要.........................................................................................ii
誌 謝.............................................................................................iii
目 錄…………………………………………………..............…….…iv
圖 目 錄……………………………………………………......…...….…vi
表 目 錄……………………………………………..……………......…viii
一、前言與文獻回顧…………………………….………………………1
1-1 儲氫合金與金屬氫化物氫壓縮機……………………………….1
1-2 儲氫合金吸放氫特性…………………………………………….2
1-2-1 吸放氫動力學性質……………………………………….2
1-2-2 熱力學性質……………………………………………….3
1-2-3 儲氫合金特性應用-金屬氫化物氫壓縮機…………….7
1-3 儲氫合金種類與介紹…………………………………………….8
1-3-1 稀土基AB5型…………………………………………….9
1-3-2 Laves相AB2型………………………...…………………9
1-3-3 鈦基AB型……………………………………………….10
1-3-4 鎂基A2B型………………………………………………10
1-3-5 金屬氫化物氫壓縮機用材料……………...………………11
二、研究背景與目的…………………………….………………………15
三、金屬氫化物氫壓縮機設計…………………..………….….…………16
3-1 氫壓縮機系統介紹……………………………………………...16
3-2 自製金屬氫化物氫壓縮機系統………………………………...17
3-2-1 氫壓縮機系統設計…………………………………...…17
3-2-2 氫壓縮機運作模式…………….……………………….19
四、儲氫合金製備與性質測試…………………………………………22
4-1 實驗方法與流程………………………………………………...22
4-2 儲氫合金製備流程……………………………………………...23
4-3 X光粉末繞射分析………………...…………………………24
4-4 合金儲放氫特性測試…………………………………………...24
4-4-1 活化處理…………………………………………………...24
4-4-2 動力學曲線……………………………………………...…24
4-4-3 PCI特性曲線…………………………………………..…25
4-5氫壓縮測試…………………...…………………………………25
五、結果與討論…………………………………………………………..26
5-1鑄態結構分析…………………………………………………...26
5-2 PCI特性曲線……………………...…………………………….28
5-3 Van’t Hoff曲線…………………….…………………………..31
5-4 吸放氫動力學曲線……………………………………………...34
5-5氫壓縮測試....................................................................37
六、結論.......................................................................39
七、未來工作.....................................................................40
八、參考文獻.............................................................41
參考文獻 [1]Louis Schlapbach, Andreas Züttel, “Hydrogen-storage materials for mobile applications”, Nature, Vol.414, pp.353-358, 2001.
[2]T. Graham, “On the Relation of Hydrogen to Palladium”, J. Franklin Inst., Vol.87, pp.256-266, 1869.
[3]廖世傑, “儲氫技術及應用簡介”, 工業材料, Vol.190, p.139, 2002.
[4]J.J. Reilly, R.H. Wiswall, “Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4”, Inorg. Chem., Vol.7, pp.2254-2256, 1968.
[5]J.J. Reilly, R.H. Wiswall, “Formation and Properties of Iron Titanium Hydride”, Inorg. Chem., Vol.13, pp.218-222, 1974.
[6]J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning, “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Res. Repts., Vol.25, pp.133-140, 1970.
[7]Q. D. Wang, C. P. Chen, Y. Q. Lei, “The recent research, development and industrial applications of metal hydrides in the People's Republic of China”, J. Alloys Comp., Vol.253-254, pp.629-634, 1997.
[8]P. Muthukumar, M. Prakash Maiya, S. Srinivasa Murthy, “Experiments on a metal hydride based hydrogen compressor”, Int. J. Hydrogen Energy, Vol.30, pp.879-892, 2005.
[9]E.P. Da Silva, “Industrial prototype of a hydrogen compressor based on metallic hydride technology”, Int. J. Hydrogen Energy, Vol.18, pp.307-311, 1993.
[10]M. Martin, C. Gommel, C. Borkhart, E. Fromm, “Absorption and Desorption Kinetics of Hydrogen Storage Alloys”, J. Alloys Comp., Vol.238, pp.193-201, 1996.
[11]Anaba Anani, Arnaldo Visintin, Konstantin Petrov, Supramaniam Srinivasan, “Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries”, J. Power Sources, Vol.47, pp.261-275, 1994.
[12]A. Zuttel, “Materials for hydrogen storage”, Materials Today, Vol.6 pp.24-33, 2003.
[13]Gary Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, J. Alloys Comp., Vol.293-295, pp.877-888, 1999.
[14]K. Aoki, M. Kamachi, T. Masumoto, “Thermodynamics of Hydrogen Absorption in Amorphous Zr-Ni Alloys”, Journal of Non-Crystalline Solids, Vol.61-62, pp.679-684, 1984.
[15]V.K. Sinha, W.E. Wallace, “The hyperstoichiometric ZrMn1+xFe1+y−H2 system II: Hysteresis effect”, J. Less-Common Met., Vol.91, pp.239-249, 1983.
[16]X. H. Wang, Y.Y. Bei, X.C. Song, G.H. Fang, S.Q. Li, C.P. Chen, Q.D. Wang, “Investigation on high-pressure metal hydride hydrogen compressors”, Int. J. Hydrogen Energy, Vol.32, pp.4011-4015, 2007.
[17]M. T. Hagström, J. P. Vanhanen, P. D. Lund, “AB2 metal hydrides for high-pressure and narrow temperature interval applications”, J. Alloys Comp., Vol.269, pp.288-293, 1998.
[18]Xinhua Wang, Rugan Chen, Yan Zhang, Changpin Chen, Qidong Wang, “Hydrogen storage alloys for high-pressure suprapure hydrogen compressor”, J. Alloys Comp., Vol.420, pp.322-325, 2006.
[19]Yu. F. Shmal’ko, A.I. Ivanovsky, M.V. Lototsky, L.V. Karnatsevich, Yu. Ya. Milenko, “Cryo-hydride High-Pressure Hydrogen Compressor”, Int. J. Hydrogen Energy, Vol.24, pp.649-650, 1999.
[20]B. K. Singh, A. K. Singh, A. M. Imam, O. N. Srivastava, “On the Structural Characteristics and Hydrogenation Behaviour of TiMn1.5 Hydrogen Storage Material”, Int. J. Hydrogen Energy, Vol.26, pp.817-821, 2001.
[21]Y. Moriwaki, T. Gamo, T. Iwaki, “Control of hydrogen equilibrium pressure for C14-type laves phase alloys”, J. Less-Common Met., Vol. 172, pp.1028-1035, 1991.
[22]Hiroshi Nagai, Katsu Kitagaki, Keiichiro Shoji, “Microstructure and Hydriding Characteristics of FeTi Alloys Containing Manganese”, J. Less-Common Met, Vol.134, pp.275-286, 1987.
[23]S.M. Lee, T.P. Perng, “Effect of the Second Phase on the Initiation of Hydrogenation of TiFe1−xMx (M = Cr,Mn) Alloys”, Int. J. Hydrogen Energy, Vol.19, pp.259-263, 1994.
[24]K. Oguro, Y. Osumi, H. Suzuki, A. Kato, Y. Imamura, H. Tanaka, “Hydrogen Storage Properties of TiFe1−xNiyMz Alloys”, J. Less-Common Met, Vol.89, pp.275-279, 1983.
[25]Chang Dong Yim, Bong Wun You, Young Sang Na, Jong Soo Bae, “Hydriding Properties of Mg-xNi Alloys with Different Microstructures”, Catalysis Today, Vol.120, pp.276-280, 2007.
[26]A. Seiler, L. Schlapbach, Th. Von Waldkirch, D. Shaltiel, F. Stucki “Surface Analysis of Mg2Ni---Mg, Mg2Ni and Mg2Cu”, J. Less-Common Met., Vol.73, pp.193-199, 1980.
[27]S. N. Klyamkin, N. S. Zakharkina, “Hysteresis and related irreversible phenomena in CeNi5-based intermetallic hydrides: I. Peculiarities of the first hydrogenation”, J. Alloys Comp., Vol.361, pp.200-205, 2003.
[28]S.N. Klyamkin, V.N. Verbetsky, “Interaction of intermetallic compounds with hydrogen at pressures up to 250 MPa: the LaCo5−xMnx-H2 and CeNi5−H2 systems”, J. Alloys Comp., Vol.194, pp.41-45, 1993.
[29]Haruhisa Uchida, Masayoshi Tada, Yen C. Huang, “The influence of cerium, praseodymium, neodymium and samarium on hydrogen absorption in LaNi5 alloys”, J. Less-Common Met., Vol.88, pp.81-87, 1982.
[30]Stéphanie Corré, Mohamed Bououdina, Daniel Fruchart, Gin-ya Adachi, “Stabilisation of high dissociation pressure hydrides of formula La1−xCexNi5 (x=0–0.3) with carbon monoxide”, J. Alloys Comp., Vol.275-277, pp.99-104, 1998.
[31]T. Gamo, Y. Moriwaki, N. Yanagihara, T. Yamashita, T. Iwaki “Formation and properties of titanium-manganese alloy hydrides”, Int. J. Hydrogen Energy, Vol.10, pp.39-47, 1985.
[32]Bin-Hong Liu, Dong-Myung Kim, Ki-Young Lee, Jai-Young Lee, “Hydrogen storage properties of TiMn2-based alloys”, J. Alloys Comp., Vol.240, pp.214-218, 1996.
[33]H. Nakamura, Y. Nakamura, S. Fujitani, I. Yonezu, “A method for designing a hydrogen absorbing LaNi5−x−yMnxAly alloy for a chemical refrigeration system”, J. Alloys Comp., Vol.252, pp.83-87, 1997.
[34]F. Laurencelle, Z. Dehouche, J. Goyette, T.K. Bose, “Integrated electrolyser—metal hydride compression system”, Int. J. Hydrogen Energy, Vol.31, pp.762-768, 2006.
[35]Jun Liu, Yifu Yang, Peng Yu, Yan Li, Huixia Shao, “Electrochemical characterization of LaNi5−xAlx (x = 0.1–0.5) in the absence of additives ” , J. Power Sources, Vol.161, pp.1435-1442, 2006.
[36]C.E. Lundin, F.E. Lynch, C.B. Magee, “A correlation between the interstitial hole sizes in intermetallic compounds and the thermodynamic properties of the hydrides formed from those compounds”, J. Less-Common Met., Vol.56, pp.19-37, 1977.
指導教授 李勝隆(Shen-long Lee) 審核日期 2009-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明