博碩士論文 963203042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.133.108.241
姓名 陳羿帆(Yi-fan Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 添加鈹、鈧之LAZ1110超輕鎂合金顯微組織與機械性質研究
(Microstructure and Mechanical properties of Super Light LAZ1110 magnesium alloy containing Be and Sc)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的為探討新型超輕鎂合金之顯微組織與機械性質。選用具有低密度及室溫良好成形性之Mg-Li系列合金為研究對象,添加微量Be、Sc元素,形成LAZ1110、LAZ1110+Sc、LAZ1110+Be及LAZ1110+Be&Sc四種合金,但因此系列合金缺乏足夠的機械強度與加工硬化效能,故我們利用不同的製程如擠製+冷軋、擠製+固溶、擠製+固溶+時效及擠製+固溶+冷軋,一方面藉由固溶強化與冷加工強化之效果來提昇材料機械強度與加工硬化能力;另一方面配合熱機處理製程技術,嘗試獲得微細晶粒的鎂鋰合金板材,進而達到超塑性。
機械性質方面,實驗結果發現在擠製+冷軋製程中,擠製材經過90%軋延率冷軋延後其抗拉強度皆可達到200MPa左右;而另一製程經擠製+固溶+冷軋,擠製材先經350℃×1hr固溶處理後立即水淬,再經90%軋延率冷軋延,因固溶及加工強化雙重效果下致使抗拉強度提昇至240MPa上下;最後,在擠製+固溶+時效製程中,材料於室溫時效下20 ~ 40hrs間會有peak值出現,最大抗拉強度約250MPa。
顯微組織方面,實驗結果發現四種材料一致性地在擠製+固溶+冷軋製程後,施於250℃×30mins退火後便可觀察到軋延率30%與60%軋延下的金相組織呈現細小且等軸晶粒其晶粒大小均<10μm,適合超塑性拉伸實驗之試樣。
摘要(英) This research probes into the microstructure and mechanical properties on the new ultra light magnesium alloy. Choose the LAZ1110 magnesium alloy (Mg-11%Li-1%Al-0.5%Zn) which have low density and high formability at room temperature research object. Adding Be and Sc elements into Mg-Li alloys. Four Mg-Li alloys; a bare one (LAZ1110), the second with Sc, the third with Be and the fourth with both Sc and Be, but Mg-Li series alloys normally have low strength and poor precipitation hardening effect. Therefore we use the different processes such as extruded/cold rolled, extruded/solid solution treatment, extruded/solid solution treatment/natural aging, and extruded/solid solution treatment /cold rolled. On the one hand, in order to enhance their strengths and work hardening ability by solid solution treatment and cold work. On the other hand, in order to obtain fine grain size on Mg-Li series alloys, making use of plastic deformation such as hot extrusion, cold rolling ect plus TMT (thermo mechanical treatment) technique.
On mechanical properties, show by the experimental result, for the process of extruded/cold rolled, the ultimate tensile strength achieve about 200MPa with 90% rolling. For other process of extruded/solid solution treatment /cold rolled, the plates were solution treated at 350oC for one hour and quenched, then for rolling reduction of 90%, the ultimate tensile strength achieve about 240MPa because solid solution treatment and work hardening effect. Finally, for the process of extruded /solid solution/natural aging, and at room temperature aging, the peak value appears within 20~40 hours, the ultimate tensile strength approximately 250MPa.
On microstructure, show by the experimental result, all the four alloys uniformly found after the process of extruded/solid solution treatment /cold rolled that 30% and 60% rolling reduction then followed by 250oCx30mins annealing, a fine grain structure was obtain, the grain size of the structure is smaller than 10μm.
關鍵字(中) ★ 壓延
★ 晶粒細化
★ 鎂鋰合金
關鍵字(英) ★ Rolling
★ Refining grains
★ magnesium lithium alloys
論文目次 第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 基本原理與文獻回顧 5
2-1 鎂合金特性 5
2-2 鎂合金的分類 7
2-3 合金元素添加對鎂合金性質之影響 8
2-4 鎂合金晶粒細化之方法與理論 11
2-4-1 鎂合金晶粒細化之影響 11
2-4-2 晶粒細化的方法 12
2-4-3 金屬材料再結晶理論 13
2-4-3-1 冷作加工儲存能 13
2-4-3-2 儲存能的釋出及再結晶驅動力 14
2-4-3-3 再結晶晶核的形成 15
2-5 鎂合金的超塑性 15
2-6 超輕鎂鋰合金經鑄造、擠製及ECAP等製程達超塑性之相關
研究文獻 16
第三章 實驗方法與設備 26
3-1 實驗材料 26
3-2 材料熱機處理 27
3-3 光學顯微鏡(OM)顯微組織觀察 28
3-4 硬度試驗 28
3-5 拉伸試驗 28
3-6 高溫拉伸實驗 29
3-7 XRD 測試 29
3-8 掃描式電子顯微鏡(SEM)拉伸破斷面觀察 30
第四章 結果與討論 37
4-1 OM光學顯微鏡組織 37
4-1-1 擠製後金相組織 37
4-1-2 擠製、然後固溶之金相組織 38
4-1-3 擠製、然後固溶再軋延之金相組織 38
4-1-4 軋延材於250℃,30mins退火後晶粒細化之金相組織 39
4-2 硬度測試 41
4-2-1 擠製後經不同固溶溫度與時間再置於室溫下時效硬度 41
4-2-2 擠製及軋延與擠製、然後固溶再軋延之硬度 41
4-2-3 擠製、然後固溶再軋延之退火硬度 42
4-3 常溫拉伸試驗 42
4-3-1 擠製、然後固溶再置於室溫下時效之機械性質 42
4-3-2 擠製及軋延之機械性質 43
4-3-3 擠製、然後固溶再軋延之機械性質 44
4-4 高溫拉伸試驗 45
4-5 拉伸破斷面觀察 45
4-6 XRD結構分析 45
4-7 軋延與ECAE兩者製程間顯微組織與機械性質的差異 46
第五章 結論 86
參考文獻 88
參考文獻 【1】楊榮川, ”鎂及其合金” ,機械工程手冊3-金屬材料篇, 2002年1月, pp.6-33~42.
【2】I.J. Polmear, Mater. Sci. Technol. 10(1994) 1-16.
【3】F. Czewinski, A. Zielinska-Lipiec, P.J. Oinet, J. Overbecke, Acta Mater. 49(2001) 1225-1235.
【4】K. Saitoh, Mater. Jpn. 38(1999) 321-324.
【5】張津、章宗和,“鎂合金及應用”,化學工業出版社(2006)。
【6】王建義, “超輕量鎂合金開發”, 工業材料雜誌(184期) , 91年4月, pp.132-136.
【7】M. Furukawa , Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon, “Microhardness Measurement and the Hall-Petch Relationship in an Al-Mg Alloy with Submicrometer Grain Size”, Acta Mater.,44, 1996, pp.4619-4629.
【8】T. Mukai, K. Ishikawa and K. Higashi, “Influence of Strain Rate on the Mechanical Properties in Fine –Grained Aluminum Alloys”, Mater. Sci. Eng. A204, 1995, pp.12-18.
【9】T. G. Langdon, “Superplastic in Ultrafine-Grained Materials”, Key Eng. Mater. , 97-98, 1994, pp.109-124.
【10】ASM Speciality Handbook, “Magnesium and Magnesium Alloys”, ASM International, (1999)
【11】Norsk Hydro Databank, Norsk Hydro Research Center Porsgrunn, 1996.
【12】Cahn RW, Haasen P, Kramer EJ(ed). “Structure and Properties of Nonferrous Alloys (Vol118) ”, Material Science and Technology A Comprehensive TREATMENT in Matucha KH(ed), Weinheim, VCH, 1996.
【13】Jona F, Marcus P M. “Magnesium under Pressure, Structure and Phase Transition” . J Phys Condens Matter, 2003, 15, 7727.
【14】R. W. Cahn, P. Haasen and E. J. Kramer, “Structure and Properties of Nonferrous Alloys”, Materials Science and Technology, 8(1996) pp.131.
【15】莊錦川, “具備輕量化潛力的擠型鎂合金”, 鎂合金產業專欄,
2001年12月, pp.134.
【16】郭子強, “熱處理對AZ91D鎂合金顯微組織與電化學性質影響之研究”, 國立成功大學, 碩士論文, 民國93年。
【17】ASM Handbook, 10 Edition, Volume 2, 1990, pp.455.
【18】 D.S.Tawil, “Corrosion and Surface Protection Developments”,in the Proceedings of the Conference of Magnesium Technology, 1986, pp.66.
【19】戴光勇,“鎂合金表面處理技術(上) ”,材料與社會,Vol.24,1998,
pp.57.
【20】T. B. Massalski, “Binary Alloy Phase Diagrams”, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1990, pp.1487.
【21】張永耀,“金屬熔銲學”,徐氏基金會,台北,1976,第134-170頁。
【22】蔡幸甫,“鎂合金產業技術及市場發展趨勢專題調查”,工研院產業經濟與資訊服務中心科技專案成果,2001。
【23】C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”, Materials Science and Engineering A325(2002), pp.344-355.
【24】C. Shaw and H. Jones, “The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys”, Materials Science and Engineering A226-228(1997), pp. 856~860.
【25】賴耿陽,“非鐵金屬材料”,復漢出版社,新竹,1998,第174-191
頁。
【26】ASM, “Magnesium Alloys”, Metals Handbook 9th Edition, Vol. 6,
1985, pp.425-434.
【27】ASM, “Magnesium Alloys”, Metals Handbook 8th Edition, Vol. 8, 1976, pp.314-319.
【28】林欣滿, “添加鋁對鎂鋰合金特性影響之研究”, 逢甲大學, 碩士論文, 民國93年。
【29】B. Smola, I. Stul´ıkov´a, V. Oˇcen´aˇsek, J. Pelcov´a and V. Neubert, “Annealing effects in Al–Sc alloys”, Materials Science and Engineering A 462 (2007), pp.370–374.
【30】 A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan and M. Kupiec, “Grain refinement of AZ31 and ZK60 Mg alloy-towards superplasticity studies”, Materials Science and Engineering A, 302A(2001), pp.56.
【31】G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, Vol. 8 VCH (1996), pp.113.
【32】J. A. Chapman, D. V. Wilson: J. Inst. Metals, 91 (1962-63), pp.35.
【33】P. Crawford, R. Barrosa, J. Mendez, J. Foyos and O. S. Es-Said, Journal of Materials Processing Technology, Volume 56, Issues 1-4, January 1996, pp.108-118.
【34】F. Mitsuaki, K. Hiroki, A. Hiroshi, G.L. Terence, “Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP”, Progress in Materials Science, 55 (2007) , pp.1083-1091.
【35】林文樹、梁銘儉、劉曉嶺、翁世樂、王文樑、黃登淵、王良泉、蔡幸甫等著,“塑性加工學”,三民書局,pp.349-356。
【36】P. Gordon , Trans. AIME, 203 1043 (1955).
【37】J. C. Li, Appl. J. Phys., 33 2958 (1962).
【38】P. B. Berbon, N. K. Tsenev, R. Z. Valie, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langond, “Fabrication of bulk ultrafine-grained materials through intense plastic straining”, Metall. and Mater. Trans. A, 29A(1998), 2237.
【39】M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, “Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE”, Scripta Materialia, 36(1997), 681.
【40】Roberto B. Figueiredo, Terence G. Langdon, Mater. Sci. Eng. A, 430(2006), pp.151-156.
【41】O. Sivakesavam and Y.V.R.K. Prasad, Materials Science and Engineering A323 (2002)270-277.
【42】S. Dong, T. Imai, S.W. Lim, N. Kanetake and N. Saito, J. Materials Science (2007) 42:5296-5298
【43】Kojima Y, Inoue M, Tanno O (1990) J Japan Inst Materials 54(3):354
【44】Higashi K, Wolfenstine J (1991) Mater Letter 10:329–332
【45】M. Furui, S. D. Wu, S. X. Li, P. J. Li, “Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP”, Acta Materialia 55 (2007), pp.1083-1091.
【46】M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada, T. G. Langdon, “Improving the superplastic properties of a two-phase Mg-8%Li alloy through processing by ECAP”, Materials Science and Engineering A 410-411(2005), pp.439-442.
【47】陳學翰, “Be、Sc微量元塑添加對LAZ1110合金機械性質之研究”, 東華大學, 碩士論文, 民國97年。
【48】A.Alamo and A.D.Banchik, “Precipitation Phenomean in the Mg-31 at%Li-1%Al Alloy”.
【49】Guang Sheng Song, “Some new characteristics of the strengthening phase in β-phase magnesium-lithium alloys containing and beryllium ”.
【50】Ming-Feng Li, “Effect of Alloying Elements Addition on the Mechanical and Corrosion Properties of Mg-9Li Alloys”.
【51】王長寧, “冷軋對LAZ1110合金機械性質的影響之研究”, 東華大學, 碩士論文, 民國97年。
【52】Y.W.Kim, D.H.Kim, H.I.Lee, C.P.Hong, Scripta Mater.38 (1998) pp.923-929.
【53】劉國政, “添加鈹、鈧之LAZ1110鎂鋰合金經等通道彎角擠製後之微結構及機械性質研究”, 中央大學, 碩士論文, 民國97年。
指導教授 李雄(Shyong Lee) 審核日期 2009-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明